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Abstract: The growing demand for consumer-end electrical load is driving the need for smarter
management of power sector utilities. In today’s technologically advanced society, efficient energy
usage is critical, leaving no room for waste. To prevent both electricity shortage and wastage, electrical
load forecasting becomes the most convenient way out. However, the conventional and probabilistic
methods are less adaptive to the acute, micro, and unusual changes in the demand trend. With the
recent development of artificial intelligence (AI), machine learning (ML) has become the most popular
choice due to its higher accuracy based on time-, demand-, and trend-based feature extractions. Thus,
we propose an Extreme Gradient Boosting (XGBoost) regression-based model—PredXGBR-1, which
employs short-term lag features to predict hourly load demand. The novelty of PredXGBR-1 lies in
its focus on short-term lag autocorrelations to enhance adaptability to micro-trends and demand
fluctuations. Validation across five datasets, representing electrical load in the eastern and western
USA over a 20-year period, shows that PredXGBR-1 outperforms a long-term feature-based XGBoost
model, PredXGBR-2, and state-of-the-art recurrent neural network (RNN) and long short-term memory
(LSTM) models. Specifically, PredXGBR-1 achieves an mean absolute percentage error (MAPE) between
0.98 and 1.2% and an R2 value of 0.99, significantly surpassing PredXGBR-2’s R2 of 0.61 and delivering
up to 86.8% improvement in MAPE compared to LSTM models. These results confirm the superior
performance of PredXGBR-1 in accurately forecasting short-term load demand.

Keywords: electrical load forecasting; load prediction; XGBoost; regression; ML-based load prediction

1. Introduction

Electricity generation that aligns with fluctuating demand has long been a critical chal-
lenge for the power sector. Balancing the needs of industrial and domestic consumers while
minimizing excess generation to prevent energy waste is an ongoing struggle. The rapid
advancement of technology, coupled with the growing emphasis on sustainable energy,
has ushered in numerous innovations within the sector. The integration of photovoltaic
systems, wind energy, and other renewable sources has facilitated the development of
decentralized, stand-alone grid stations [1]. However, despite these advancements, their
full potential remains unrealized if system losses are not adequately mitigated. Conse-
quently, accurate demand prediction has emerged as a key focus area for researchers and
industry alike.

While the concept of load prediction is not new, having been applied to grid net-
works for decades, the evolution of predictive methodologies has been significant. Early
approaches relied on qualitative and quantitative methods such as curve fitting, decompo-
sition, regression analysis, and exponential smoothing. These traditional models, while
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effective to an extent, gave way to more complex statistical techniques like auto regression
(AR), the auto regressive moving average (ARMA), the auto regressive integrated mov-
ing average (ARIMA), and the support vector machine (SVM), all of which introduced
intricate, multivariable mathematical models [2–5]. As the central grid expanded, these
models became increasingly prone to NP-hard problems, exacerbating the complexity of
demand forecasting.

To address this growing complexity, recent research has shifted toward data-driven,
ML-based approaches, which offer the potential to significantly reduce system intrica-
cies [6–9]. Over the past decade, ML has ascended to the forefront of predictive analytics,
particularly in time series forecasting. By mimicking human learning processes, ML algo-
rithms process vast datasets, extract features, and gain insights, offering unprecedented
computational speed, accuracy, and adaptability [10]. These characteristics have made ML
indispensable in a variety of practical applications, from image and handwriting recogni-
tion [11] to home automation and IoT-based smart systems, such as waste management [12].
In the realm of load forecasting, ML methods, particularly those involving supervised learn-
ing, have proven transformative. By utilizing labeled datasets for training, these methods
not only streamline the prediction process but also enhance the speed and robustness of
the resulting models.

Most contemporary research on electric load forecasting focuses on models like LSTM,
the RNN, and the convolutional neural network (CNN), and statistical methods based on
the ARIMA and the SVM. While effective, these approaches often overlook short-term,
definite time-lag features—dependencies between data points over short, fixed intervals,
such as the relationship between electricity demand at one hour and demand from earlier
hours. These time-lagged features are crucial for capturing the immediate effects of factors
like weather or peak usage that drive sudden load fluctuations. Without them, models
struggle with randomness and nonlinearity, leading to less precise, generalized predictions
that fail to account for short-term variations. Neglecting these temporal dynamics results
in models that capture broad trends but miss critical short-term fluctuations, particularly
in environments with rapidly changing demand. This lack of specificity can reduce the
model’s effectiveness in real-time scenarios, leading to either over- or under-generation of
electricity. Incorporating definite time-lag features would enable models to better predict
short-term variations, improving accuracy and reliability, and addressing a crucial gap in
current forecasting methodologies. This integration could lead to more adaptive, precise
load management, ensuring better efficiency in power distribution.

To address these challenges, we introduce PredXGBR-1, an XGBoost-based regression
model carefully designed to incorporate short-term lag features, which substantially en-
hance the model’s accuracy and robustness in electric load forecasting. Traditional models
often overlook the immediate temporal dependencies critical for capturing sudden shifts in
electricity demand. In contrast, PredXGBR-1 leverages key short-term lag features, including
the mean and standard deviation of load data over recent 6, 12, and 24 h periods, to monitor
and adapt to these rapid demand changes. By focusing on these short-term intervals,
PredXGBR-1 effectively captures the impact of transient factors—such as abrupt weather
fluctuations, spontaneous industrial activity spikes, or peak residential usage—providing
a detailed understanding of demand volatility that is crucial for precise, real-time fore-
casting. This nuanced approach allows PredXGBR-1 not only to deliver high-resolution
forecasts but also to maintain resilience against unpredictable demand patterns that might
otherwise lead to inefficiencies in power distribution. The model’s predictive accuracy and
adaptability have been rigorously validated across five diverse datasets, demonstrating
that the incorporation of short-term lag features plays an indispensable role in producing
precise, responsive forecasts that support dynamic and efficient power management in
real-world scenarios.

In addition to the previously outlined attributes of PredXGBR-1 and PredXGBR-2, we
emphasize that the primary distinction lies in their feature selection approaches, specifically
focusing on different time-lag intervals to capture unique temporal dependencies in the



Electronics 2024, 13, 4521 3 of 26

data. PredXGBR-1 incorporates only short-term lag features, such as the mean and standard
deviation of load over recent intervals like the past 6, 12, and 24 h. This design allows it
to adapt swiftly to immediate demand fluctuations, which is crucial for short-term load
forecasting. Conversely, PredXGBR-2 is tailored for scenarios requiring longer forecasting
horizons by integrating long-term lag features that extend to broader time frames, including
the mean and standard deviation of load data over the previous 24 h and 48 h, and weekly
intervals. These long-term features enable PredXGBR-2 to capture seasonal and weekly
patterns that influence load demand, offering stability and improved performance for
forecasts that rely on recurring patterns over time. This tailored approach for each model
version explains the notable variance in their prediction accuracies across different datasets
and time periods, as highlighted in our experimental results.
Summary of Contribution:

• We have developed and implemented PredXGBR-1, a short-term feature-based XG-
Boost model with time-lagged features. PredXGBR-1 is designed to capture short-term
fluctuations in electricity demand by leveraging data from the previous 24 h, and it has
been rigorously evaluated and validated across five different datasets. The integration
of time-lagged features significantly improved prediction accuracy, addressing a key
gap in existing forecasting methods.

• We performed an extensive analysis to explore how different feature sets influence
the performance of the model. This comparative study proved our intuition that
short-term lag features are essential for enhancing predictive accuracy, especially in
rapidly fluctuating demand environments.

• The proposed model demonstrated high accuracy, achieving an MAPE of 0.98–1.2%
across all datasets. This result underscores the model’s robustness and reliability for
short-term load forecasting in diverse scenarios.

• We pledge to share the whole code repository and the dataset with the community to
promote reproducibility and advancements in the field of electric load forecasting.

2. Related Works

In recent years, various approaches of short-term load forecasting have been devel-
oped, emerging as some of the most effective methods for electric load prediction. ML and
deep learning (DL) models have become prominent due to their ability to handle complex
data and provide more accurate forecasts, thus facilitating efficient management, economic
dispatch, and scheduling of electrical loads [13]. Load forecasting techniques can generally
be categorized into three main groups: statistical models, ML-based models, and hybrid
models [14].

One of the most widely used techniques is based on artificial neural networks (ANN)s,
which have been found to be highly effective for load forecasting. Aly et al. [15] intro-
duced six hybrid models combining ANNs with Wavelet Neural Network (WNNs) and
Kalman Filtering (KF), demonstrating improvements in prediction accuracy. Similarly,
Singh et al. [16] conducted a regional load forecasting study for the NEPOOL region of ISO
New England, utilizing hourly temperature, humidity, and historical load data. However,
this study did not consider yearly holiday schedules, which could have an impact on load
prediction. A Boosted Neural Network (BooNN), an enhancement of the traditional ANN,
was presented by Khwaja et al. [17]. The model reduced forecasting errors by iteratively
improving predictions based on the output of previous iterations. Another popular model
is LSTM, which has been widely used for accurate load forecasting. Many researchers have
proposed both classic and hybrid models involving LSTM. Marino et al. [18] compared
conventional LSTM with a Sequence-to-Sequence (S2S) architecture for individual building-
level load forecasting, while Ageng et al. [19] designed an hourly load forecasting model
for domestic households, combining LSTM with advanced data preparation strategies.
This work also considered the segmentation of a day into patterns such as weekends and
weekdays, while addressing data quality issues through interpolation and de-noising.
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In a comparative study, Ogunjuyigbe et al. [20] evaluated multiple load forecasting
models, including Multiple Linear Regression (MLR), the seasonal auto regressive in-
tegrated moving average with exogenous variables (SARIMAX), and LSTM. The study
highlighted the limitations of univariate approaches, such as the exclusion of holidays,
weather conditions, and climate data. Mubashar et al. [21] conducted another comparison,
where different classical models were tested with real-time series data. The study con-
firmed the superiority of LSTM over traditional models such as exponential smoothing and
the ARIMA. Bashir et al. [22] proposed a hybrid model combining the Back Propagation
Neural Network (BPNN) with Prophet and LSTM. In this model, datasets were trained
using the SARIMA and Prophet models, while the residual nonlinear data were trained
using LSTM. The outputs were linearly added together and further optimized with the
BPNN model. Neeraj and Mathew [23] developed a Singular Spectrum Analysis–Long
Short-Term Memory (SSA-LSTM) model, where the dataset was filtered for noise using
signal processing techniques. The model’s performance was compared to that of traditional
ML and DL models, such as Support Vector Regression (SVR), ANNs, and Deep Belief
Networks (DBNs), among others. Although no weather or holiday data were considered in
the study, this group validated the model using a diverse set of data. In addition, a Discrete
Particle Swarm Optimization (DPSO)-LSTM approach was introduced by Yang et al. [24],
where DPSO was employed to optimize the selection of features, improving the model’s
accuracy for weekly load forecasting. However, weekend and working day distinctions
were not included in this approach, and no weather forecasting data were incorporated.

In recent years, RNNs have also gained attention in the field of load forecasting. Kong
and Dong [25] studied an RNN-based LSTM model to forecast electrical loads, demon-
strating that aggregating individual load forecasts provided more reliable results than
directly forecasting aggregated loads. The authors also explored the influence of weather
forecasting on load prediction accuracy, showing that models incorporating weather data
outperformed those that did not. Additionally, a 2D CNN model was examined [26,27],
though it struggled to predict full-day load profiles accurately. CNNs have been applied to
load forecasting with promising results. Amarasinghe et al. [18] benchmarked a classical
CNN against an LSTM-(S2S) model, showing that CNN models could accurately predict
peak load demand for a power station. Ibrahim and Rabelo [28] extended this work by ap-
plying various CNN structures, such as multivariate CNN, CNN-LSTM, and multi-headed
CNNs. Their study found that the multivariate CNN model outperformed LSTM under
both noisy and noise-free conditions.

Recent developments in regression models, particularly XGBoost, have contributed to
enhanced load forecasting. Wang et al. [27] proposed a model combining linear regression
for trend series and XGBoost for fluctuating sub-series, with data decomposed using varia-
tional mode decomposition (VMD) and singular value mode decomposition (SVMD). This
approach was particularly effective for industrial load forecasting, where environmental
factors such as temperature and holiday schedules were considered. Although the model
struggled with nonlinearity and uncertainty in industrial loads, the VMD helped stabilize
its performance.

In another study, Zheng et al. [29] introduced a hybrid model involving similar day
(SD), empirical mode decomposition (EMD), and LSTM. This model used XGBoost to cap-
ture similarities between forecast data and historical data, further improving load prediction
accuracy. SVMs have also been widely applied in load forecasting. Barman et al. [29] de-
veloped a Grasshopper Optimization Algorithm-based SVM (GOA-SVM) to minimize the
deviation between forecasted and actual load curves. The GOA-SVM model was validated
by comparing it to a genetic algorithm (GA)-SVM model and particle swarm optimiza-
tion (PSO)-SVM model, demonstrating the effectiveness of the proposed approach using
regional climate data. These relevant works are summarized in Table 1.



Electronics 2024, 13, 4521 5 of 26

Table 1. Summary of related literature.

Research Model Contribution Limitation

Aly et al. [15] ANN, WNN,
KF

Six clustering hybrid models
combining ANN, WNN, and
KF for load forecasting.

Did not account for
weekday/weekend
patterns.

Singh et al. [16] Standard
ANN

Regional load forecasting us-
ing historical temperature,
humidity, and load data.

Excludes yearly hol-
iday schedules; lim-
ited datasets.

Khwaja
et al. [17]

Boosted
ANN

Iterative minimization of fore-
casting error using BooNN,
improving prediction accu-
racy.

No specific limita-
tions mentioned.

Marino
et al. [18]

LSTM, S2S Comparison of LSTM and
S2S architectures for building-
level forecasting.

Only focused on a
single building-level
dataset.

Ageng et al. [19] LSTM, Data
Preparation

Addressed data interpolation
and de-noising for household
load forecasting.

Weather and atmo-
spheric conditions
not considered.

Ogunjuyigbe
et al. [20]

LSTM,
ARIMA

Comparative analysis of
LSTM with ARIMA for
improved accuracy.

Limited considera-
tion of holidays and
weather data.

Mubashar
et al. [21]

MLR, ANN,
SVR

Use of Gaussian filtering and
validation across academic,
commercial, and residential
datasets.

Did not consider
long holidays or
special events.

Bashir & Haoy-
ong [22]

Prophet,
LSTM

Hybrid Prophet-LSTM model
with residual nonlinear data
trained by LSTM.

Excluded week-
end/weekday
patterns; limited
dataset validation.

Neeraj &
Mathew [23]

SSA-LSTM Proposed SSA-LSTM model
with noise reduction via sig-
nal processing.

No weather- or
climate-related
data; holidays not
considered.

Yang et al. [24] DPSO-
LSTM

Combined DPSO algorithm
with LSTM for weekly load
forecasting.

Did not distinguish
weekday patterns
or consider weather
conditions.

Kong &
Dong [25]

RNN, LSTM Demonstrated improvement
in forecast accuracy when us-
ing weather data with RNN-
based LSTM.

Limited histori-
cal data used in
evaluation.

Amarasinghe
et al. [18]

CNN Benchmarking classical CNN
against LSTM for peak load
demand forecasting.

Model was not val-
idated with diverse
datasets.

Imani et al. [30] CNN, SVR Proposed Nonlinear Relation-
ship Extraction (NRE) us-
ing CNN and SVR for load–
temperature correlation.

Socio-demographic
data and house-
hold occupancy not
considered.
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Table 1. Cont.

Research Model Contribution Limitation

Alhussein
et al. [31]

CNN-LSTM Proposed hybrid CNN-LSTM
model for feature extraction
and sequence learning.

Did not consider
socio-demographic
data or household
occupancy.

Wang et al. [27] XGBoost,
VMD,
SVMD

Hybrid XGBoost model com-
bined with trend analysis us-
ing VMD for industrial load
forecasting.

Model not tested on
multiple datasets.

Zheng et al. [29] LSTM, XG-
Boost, EMD

Developed a hybrid model
combining EMD, LSTM, and
XGBoost for similarity-based
forecasting.

No major limitations
reported.

Barman
et al. [32]

GOA-SVM,
GA-SVM,
PSO-SVM

Proposed Grasshopper Op-
timization Algorithm-based
SVM for minimizing forecast-
ing errors.

Did not incorporate
comprehensive
regional climate
factors.

3. Background and Preliminaries

Traditionally, electric load forecasting, including daily load demand and long-term
load prediction, has relied on statistical and probabilistic models. Notable algorithms in
this domain include the ARIMA [33] and SVM [34], which have been widely used in earlier
load forecasting approaches, as presented in Section 2.

3.1. ARIMA and Time Series Methods

The ARIMA model is one of the most commonly used methods in time series fore-
casting [33,35–37]. The ARIMA is designed to handle nonstationary time series data by
differencing it to make it stationary. It has been extensively applied in fields such as digital
signal processing, economic forecasting, and electric load prediction. Extensions of the
ARIMA, including the auto regressive integrated moving average with exogenous variables
(ARIMAX) [38,39], which incorporates exogenous variables such as weather data and the
ARMA [40,41], which assumes stationary data, are also widely used in load forecasting.
The working principle of the ARIMA is presented in Figure 1a. The process begins by
checking whether the time series is stationary; if not, differencing or power transformation
is applied to achieve stationarity. Once the series is stationary, the model identifies key
parameters (P, d, q) through the analysis of the autocorrelation and partial autocorrelation
functions. The coefficients are then estimated, followed by a diagnostic check to ensure
the model fits the data. If the model passes, it is finalized; otherwise, adjustments are
made to improve its accuracy. The ARIMA model uses time and load as its primary input
parameters, making it particularly effective for time series analysis where seasonality and
trends are key features. Among the ARIMA family, the ARIMAX has gained prominence in
electric load forecasting due to its ability to integrate weather variables, which are crucial
factors influencing load demand. However, the complexity of interconnected grids and
the increasing number of variables in real-world scenarios often lead to large, complex
mathematical models, making probabilistic models less practical for some applications.
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Figure 1. Main steps of ARIMA and SVM.

3.2. SVM

The SVM is another popular approach for load forecasting [42–44]. The SVM is a
supervised learning algorithm that excels in both regression and classification tasks. It
works by mapping input data to a high-dimensional space, enabling it to classify and
predict large volumes of data efficiently. Known for its ability to prevent overfitting, the
SVM maximizes the margin between classes, making it particularly effective for large
datasets. Kernel methods and large-margin classifiers are central to the SVM’s success
in handling nonlinear data. Figure 1b depicts the main steps of SVM operation. After
collecting and preprocessing the dataset, the SVM initializes hyperparameters (C, g) for
the model. The SVM is then trained using the given data, and its performance is evaluated
based on criteria such as accuracy. If the model meets the accuracy criteria, it is finalized.
Otherwise, a grid search is conducted to optimize the hyperparameters before retraining to
improve performance. The SVM has found applications in a wide range of areas, including
time series prediction, feature selection, solar and wind energy prediction, lake water level
forecasting, and more [45–47]. However, the SVM’s scalability can become a limitation
when handling the large, interconnected systems typical in modern electric load forecasting.

3.3. DL Approaches

DL, a subset of ML, has emerged as a powerful tool for electric load forecasting. DL
models, particularly neural networks, consist of multiple layers that automatically learn
features from data. These layers, often referred to as “deep” due to the depth of the network,
allow the model to capture complex patterns in the data.

3.3.1. RNN

RNNs are connectionist models designed to process sequential data. Unlike tradi-
tional feedforward networks, RNNs maintain internal memory, enabling them to process
historical data effectively. This makes them well suited for tasks like electric load fore-
casting, where past load data are crucial for making predictions [48–50]. Despite their
strengths, RNNs were initially difficult to train, limiting their widespread use until recent
advancements in training techniques. RNNs are designed to handle sequential data by
having connections that loop back within the network. As shown in Figure 2a, the RNN
takes an input sequence X and passes it through recurrent layers, where each output O at
time step i depends on both the current input xi and the previous output Oi−1, with shared
weights w. This recurrent mechanism allows RNNs to capture temporal dependencies
in sequences, which makes them suitable for tasks like time series forecasting or natural
language processing.
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Figure 2. Main steps of RNN and LSTM.

3.3.2. LSTM

LSTM, a variant of RNN, is designed to handle long-term dependencies in data. Its
central unit, known as the cell state, acts as memory, retaining relevant information while
discarding unnecessary data. This architecture allows LSTM to process historical data more
effectively than standard RNNs, making it ideal for applications like handwriting recogni-
tion, image processing, and, notably, electric load forecasting [51,52]. Recent developments
in LSTM-based algorithms have led to robust models for electric load forecasting [53–55].
LSTM is designed to handle long-term dependencies and mitigate the vanishing gradient
problem that can occur in standard RNNs. Figure 2b shows the LSTM’s internal architec-
ture, which consists of various gates. The forget gate decides what information to discard,
the input gate regulates the new information added to the cell state, and the output gate
determines the final output ht. These gates work together to control the flow of information,
making LSTM effective for learning patterns in data over longer time intervals.

3.3.3. Temporal Convolutional Networks (TCN)s

TCNs are convolutional neural network-based architectures specifically designed for
sequence modeling tasks, utilizing causal convolutions to capture temporal dependencies
in data without the recurrent connections found in RNNs. By stacking layers of 1D
convolutions with dilation, TCNs can learn from both short- and long-range dependencies
efficiently [56,57]. This makes them suitable for applications like electric load forecasting,
where capturing temporal patterns is crucial. Unlike RNNs and LSTM, which rely on
sequential data processing, TCNs enable parallel computation, offering lower inference
times and improved computational efficiency [58].

3.3.4. Transformer

The Transformer model, introduced by Vaswani et al., revolutionized sequence model-
ing with its self-attention mechanism, which allows the model to focus on relevant parts
of the input sequence without relying on recurrent connections [59]. This attention mech-
anism enables Transformers to capture dependencies at varying distances in the data,
making them highly effective for tasks requiring long-term dependency modeling, such as
time series forecasting and natural language processing. Transformers have demonstrated
strong predictive performance in electric load forecasting by efficiently handling sequential
data with both global and local dependencies [60]. The basic architecture of a Transformer
comprises multiple layers of self-attention and feedforward networks, allowing it to process
input sequences in parallel, reducing computational complexity and improving scalability.

3.4. XGBoost

XGBoost is a gradient-boosting algorithm known for its high efficiency and predictive
accuracy. It uses decision trees as weak predictors and incorporates both linear solvers
and tree learning algorithms [61]. The model builds successive trees using residual errors
from previous trees, ultimately producing a more optimized prediction. Its application
spans various domains, including fingerprint localization, sales forecasting, chronic dis-
ease diagnosis, and electric load forecasting [6,62–64]. Due to its ability to handle large
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datasets with high computational speed, XGBoost has become a preferred model in many
forecasting tasks.

While traditional models like the ARIMA and SVM have provided reasonable accu-
racy in load forecasting, their limitations, particularly with the increasing complexity of
interconnected grids, have led to a shift toward ML-based models. Specially, LSTM and
XGBoost have been shown to provide superior performance by adapting to complex data
patterns and handling nonlinear relationships more effectively.

The superior performance of LSTM and XGBoost in handling nonlinear relationships
arises from their unique model architectures and learning mechanisms. Specifically, LSTM
networks are designed with memory cells and gating mechanisms that allow them to cap-
ture complex, nonlinear dependencies across time steps by retaining relevant information
over extended sequences [65,66]. This design enables LSTM models to adapt to intricate
patterns in sequential data, making them well suited for electric load forecasting [53,67].
Similarly, XGBoost leverages a gradient boosting framework, which iteratively refines an
ensemble of decision trees. Each tree in this ensemble learns from the residual errors of
the previous trees, thereby adapting to complex, nonlinear patterns within the data [68].
This boosting technique, combined with efficient computational methods, enables XGBoost
to model nonlinear relationships effectively [63]. These theoretical foundations under-
score why both LSTM and XGBoost outperform traditional linear methods, particularly in
capturing the nonlinear dynamics essential for accurate load forecasting.

4. Proposed Model: PredXGBR-1

Short-term electrical load prediction poses significant challenges due to the inherent
complexity of the data, which is nonlinear, nonstationary, and often imbalanced. Traditional
time series forecasting methods such as the ARIMA and exponential smoothing typically
fail to capture the nonlinear dependencies and dynamic patterns present in electrical load
data. To address these limitations, we propose PredXGBR-1, an XGBoost-based regression
model tailored for short-term load forecasting.

The PredXGBR-1 model utilizes the Extreme Gradient Boosting (XGBoost) framework, a
high-performance machine learning algorithm widely recognized for its accuracy, efficiency,
and scalability. XGBoost operates on the principle of gradient boosting, where an ensemble
of decision trees is sequentially added, with each tree aiming to correct the errors of its
predecessors. This iterative process allows the model to continuously refine its predictions,
making it exceptionally powerful for capturing complex patterns in time series data, such
as the short-term fluctuations in electric load.

A key strength of XGBoost lies in its use of a regularized objective function, which
balances predictive accuracy with model complexity. This objective function has two main
components: the loss function and the regularization term. The loss function, typically
squared error for regression tasks, measures the difference between predicted and actual
values, driving the model to improve accuracy. The regularization term, on the other hand,
penalizes the complexity of the model, thereby preventing overfitting—a common issue in
high-dimensional and noisy datasets like those in electric load forecasting.

The regularization term in XGBoost includes two critical parameters: γ, which controls
the number of leaves in each tree, and α, which regulates the magnitude of the weights
assigned to these leaves. The parameter γ penalizes the model for adding additional
leaves, discouraging overly complex trees, while α ensures that the model does not assign
excessively large weights to any leaf. Together, these parameters constrain the model’s
complexity, ensuring that it generalizes well to new data and remains robust across diverse
forecasting scenarios. Additionally, XGBoost’s use of shrinkage and subsampling during
training further enhances model stability by reducing variance and improving resilience
to noise.

The PredXGBR-1 model benefits from these regularization strategies by achieving a
high level of accuracy while maintaining computational efficiency and avoiding overfitting.
Specifically tailored for short-term load forecasting, PredXGBR-1 integrates short-term lag
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features—such as the mean and standard deviation of load over recent intervals—which
makes it responsive to sudden changes in demand. This targeted use of short-term features,
combined with XGBoost’s regularization framework, enables PredXGBR-1 to deliver accu-
rate, adaptive predictions in real time, which is essential for efficient energy management
in modern power systems.

PredXGBR-1 leverages short-term lag features to better handle the temporal dependen-
cies and nonlinear relationships within the data while integrating the benefits of gradient-
boosting trees to address the challenges of short-term electrical load forecasting.

4.1. Challenges in Short-Term Electrical Load Forecasting

The primary challenges in short-term electrical load forecasting are the following:

• Nonlinear Relationships: Electrical load is influenced by various external factors
such as weather conditions, time of day, and sudden shifts in demand. These complex
and nonlinear relationships are difficult to model using conventional linear methods.

• Unbalanced Data: Load datasets are often characterized by periods of stable us-
age interspersed with sudden spikes or drops in consumption. This imbalance can
negatively impact the performance of standard regression models.

• Temporal Dependencies: Load at a particular time is dependent on both short-term
and long-term historical data, making the selection of features and modeling of
temporal dependencies critical.

4.2. How PredXGBR-1 Addresses These Challenges

To address these challenges, PredXGBR-1 incorporates several key innovations based
on the strengths of the XGBoost algorithm:

• Tree-Based Regression: The model employs the classification and regression tree
(CART) as a base learner, enabling it to capture complex, nonlinear relationships within
the data. The tree-based structure allows the model to perform well in unbalanced
datasets by focusing on regions of the data with the highest residuals.

• Boosting Mechanism: XGBoost uses boosting to iteratively refine predictions by
correcting the residual errors from previous iterations. This iterative process enables
PredXGBR-1 to focus on improving short-term predictions, which are typically more
volatile and difficult to forecast.

• Feature Selection: The model utilizes short-term lag features—mean and standard
deviation of load over the prior 6, 12, and 24 h intervals—which capture the immediate
temporal dependencies. This is critical in load forecasting, where short-term variations
can greatly impact overall prediction accuracy.

In contrast to conventional XGBoost models, PredXGBR-1 is tailored specifically for
short-term load forecasting through its strategic use of short-term lag features, which
allow the model to capture immediate fluctuations and micro-trends in demand. By
focusing on these recent temporal dependencies, PredXGBR-1 can respond quickly to short-
term changes—such as peak demand spikes or abrupt shifts driven by weather condi-
tions—offering a more responsive and accurate forecasting capability. This specialized
feature selection makes PredXGBR-1 uniquely suited for short-term predictions, providing
it with a nuanced understanding of recent trends that standard XGBoost models, designed
without this emphasis on short-term lags, may overlook. As a result, PredXGBR-1 out-
performs traditional approaches in short-term load forecasting, as demonstrated by its
consistently lower MAPE and higher R2 values across datasets.

To address different temporal dependencies, our approach incorporates both short-
term and long-term lag features. For the models with long-term features, we consider
temporal windows that extend to broader intervals, enabling the model to capture extended
seasonal patterns and weekly or monthly trends. Specifically, the long-term lag features
include aggregate statistics (mean and standard deviation) of load data over the previous
24 h and 48 h, and weekly intervals. These broader windows provide essential context for
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models tasked with longer forecasting horizons, allowing them to adapt to recurring cycles
in the data.

In contrast, PredXGBR-1 focuses on short-term lag features using intervals from the
previous 6, 12, and 24 h. This design choice emphasizes recent data, optimizing the model
for accurate short-term forecasting by capturing immediate, short-duration fluctuations.

4.3. Model Structure and Formalization

PredXGBR-1 is a gradient-boosted tree model designed to minimize a convex loss
function over time series data. Let N denote the total number of trees in the ensemble, and
fk(xi) represent the output of the k-th tree for sample xi. The predicted value ŷxi for the
i-th sample is computed as the sum of the outputs of all trees:

ŷxi =
N

∑
k=1

fk(xi), fk ∈ ζ (1)

where fk belongs to the space ζ of regression trees. Unlike decision trees used for classifica-
tion, regression trees output continuous values, which are better suited for the prediction
of time series data. Each tree is built iteratively, with each subsequent tree aiming to correct
the errors (residuals) of the previous trees.

4.4. Illustration of the Model Structure

To illustrate the core working mechanism of PredXGBR-1, Figure 3 provides a dia-
grammatic view of the iterative process. The figure shows how each regression tree in the
ensemble progressively adjusts the model’s predictions by learning from the residuals of
the previous trees. In this framework, the model begins with an initial prediction ŷ0, and
each subsequent tree fk(x; ϕk) adds its output to the prediction based on the residuals from
the previous tree.

𝑓1(𝑥; ∅1)

ො𝑦0 + 𝑣𝑓1(𝑥; ∅1)

ො𝑦0=0

𝑓2(𝑥; ∅2)

ො𝑦1 + 𝑣𝑓2(𝑥; ∅2)

𝑓𝑇(𝑥; ∅𝑇)

ො𝑦𝑇−1 + 𝑣𝑓𝑇(𝑥; ∅𝑇)

Regression

Tree RT

Model Prediction

[𝑥, 𝑦 − ො𝑦0] [𝑥, 𝑦 − ො𝑦1] [𝑥, 𝑦 − ො𝑦𝑇−1]

. . .

ො𝑦1=0 ො𝑦2=0 ො𝑦𝑇=0. . .

X: Predictors Y: Target

Figure 3. Working principle of the proposed PredXGBR-1 model. The model iteratively refines its
prediction by minimizing residuals using successive regression trees. Each new tree improves upon
the predictions of its predecessor by learning from the residuals.

In Figure 3, the first tree f1(x; ϕ1) produces an initial adjustment based on the pre-
dictors x. The second tree f2(x; ϕ2) further refines the prediction ŷ1 by addressing the
remaining error. This process continues iteratively until the model converges, with the final
prediction ŷT representing the cumulative output of all trees in the ensemble.
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4.5. Objective Function

The learning objective is to minimize a regularized loss function that balances predic-
tive accuracy and model complexity. The objective function is defined as

L(ϕ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (2)

where l(ŷi, yi) is the loss function, typically the squared loss for regression tasks:

l(ŷi, yi) =
1
2
(ŷi − yi)

2 (3)

The term Ω( fk) represents the regularization function, which penalizes model com-
plexity to prevent overfitting:

Ω( fk) = γT +
1
2

α∥ω∥2 (4)

Here, T is the number of leaves in the tree, and ω represents the leaf weights. The
regularization parameters γ and α help control the depth and weight magnitudes of the
trees, respectively, ensuring that the model does not become overly complex and overfit
the training data.

4.6. Leaf Weight Optimization

The optimization of the weights assigned to each leaf is critical for improving the
predictive power of the model. For each leaf node j, the optimal weight ω∗

j is computed by
minimizing the regularized loss function. The weight ω∗

j is given by

ω∗
j = −

∑i∈Ij
gi

∑i∈Ij
(hi + α)

(5)

where gi and hi are the first and second derivatives of the loss function with respect to the
prediction ŷi, known as the gradient and Hessian, respectively. The index Ij denotes the
set of instances assigned to leaf j. This equation is derived from a second-order Taylor
expansion of the loss function, allowing the model to efficiently minimize the loss while
accounting for both the gradient and curvature of the objective function.

4.7. Tree Quality Evaluation

The quality of each regression tree is assessed by evaluating the reduction in the
objective function after adding a new tree. The reduction in the residual sum of squares
(RSS) is computed as

L̃t(q) = −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
(hi + α)

+ γT (6)

This equation represents the improvement in the model’s predictions after the addition
of each tree, with the regularization term γT acting to penalize overly complex trees.

4.8. Split Candidate Evaluation

The selection of optimal split points is crucial for building effective regression trees.
To evaluate the effectiveness of a split, the gain from splitting the data into two subsets, IL
and IR, is calculated as

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
(hi + α)

+

(
∑i∈IR

gi
)2

∑i∈IR
(hi + α)

− (∑i∈I gi)
2

∑i∈I(hi + α)

]
− γ (7)
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The gain reflects the improvement in the objective function as a result of the split. A
higher gain indicates a better split, leading to more accurate predictions and an overall
reduction in prediction error.

4.9. Model Generalization and Overfitting Control

A key strength of PredXGBR-1 is its ability to prevent overfitting through the inclusion
of regularization terms in the objective function and the use of early stopping criteria. The
parameters γ and α control the complexity of the trees, ensuring that the model does not overfit
the training data. Additionally, by monitoring the validation error during training, the model
can halt the training process if further iterations do not lead to significant improvements.

PredXGBR-1 combines the flexibility and power of XGBoost with domain-specific
adaptations for short-term load forecasting. The integration of short-term lag features and
tree-based regression enables the model to accurately predict short-term fluctuations in
electrical load. By employing a robust regularization framework, PredXGBR-1 ensures that
the model generalizes well to unseen data, making it a reliable tool for short-term load
forecasting in real-world applications.

5. Datasets and Feature Extraction

To rigorously evaluate the performance of our model, we selected five diverse datasets
from centralized grid stations across different regions in the USA. The selection of these
datasets was based on their distinct characteristics, such as geographical location, load
patterns, and time span, which together provide a comprehensive validation of our model’s
robustness. Table 2 summarizes each dataset along with its description and time span.

Table 2. Electrical load forecasting datasets for model evaluation.

Dataset Description Time Span

PJM—PJM Interconnec-
tion LLC [69]

Regional transmission organization (RTO) in
the USA, serving Delaware, Illinois, Indiana,
Kentucky, Maryland, Michigan, New Jersey,
North Carolina, Ohio, etc.

1998–2002

PJME—PJM East [70] Hourly data from the PJM East region. 2001–2018

PJMW—PJM West [71] Hourly data from the PJM West region. 2001–2018

AEP—American Elec-
tric Power (AEP) [72]

A major investor-owned electric utility in the
USA, delivering electricity across 11 states.

2004–2018

Dayton—Dayton
Power and Light
Company [73]

Serving over 500,000 customers within a 6000-
square-mile (16,000 km2) area in West Central
Ohio, around Dayton.

2004–2018

5.1. Data Preprocessing

To ensure the quality and consistency of the data used in our model, we employed a
systematic preprocessing approach to address issues such as missing values, timestamp
inconsistencies, and temporal variations in load patterns. These preprocessing steps are
detailed below, highlighting the methods and rationale behind each step to illustrate their
impact on the model’s performance:

• Handling Missing Values:
Missing entries in the datasets were primarily due to interruptions in data logging
or transmission errors, which can introduce biases and disrupt model training. To
address this, we applied two techniques: linear interpolation and forward filling.
For extended periods with missing data, linear interpolation was used to generate
intermediate values based on surrounding data points, creating smooth transitions
and preserving underlying trends. This approach was particularly useful for restoring
temporal continuity over multiple time steps. For isolated missing points, forward
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filling was employed, where the last available valid value was repeated to fill gaps.
This method was beneficial for short, intermittent gaps, ensuring the continuity of time
series patterns without distorting the data structure. By addressing missing values,
we maintained the temporal integrity of the data, allowing the model to capture
continuous patterns in load fluctuations accurately.

• Organizing Data in Temporal Order:
Accurate temporal sequencing is essential for load forecasting models, especially
those that rely on time-lagged features to capture dependencies over time. To achieve
this, we standardized all timestamps across datasets to a 24 h format using Python’s
datetime module, which enabled us to resolve inconsistencies, such as incorrect
AM/PM labels. These inconsistencies, if left unaddressed, could lead to misalignment
of hourly data, resulting in misleading trends and poor model performance. After
standardizing the timestamps, we sorted records in ascending order by hour, ensuring
that each observation followed a natural temporal progression. This careful sequenc-
ing allowed our model to accurately interpret time-dependent features and reliably
capture the structure of load demand patterns.

• Removing Duplicate Entries:
Duplicate entries in time series data can skew the model’s learning process by overem-
phasizing certain observations, potentially leading to biased predictions. We per-
formed a systematic search for duplicate records within each dataset, focusing on
entries with identical timestamps and load values. Once identified, these duplicates
were removed to ensure that each data point represented a unique, distinct observa-
tion. This step preserved the dataset’s integrity, enabling the model to generalize well
by learning from an unbiased representation of historical load patterns.

• Segmentation of Peak and Off-Peak Hours:
Load demand often fluctuates significantly between peak and off-peak periods, driven
by factors such as residential and industrial activity levels. To capture these fluctua-
tions, we segmented each day’s load data into peak and off-peak hours. Specifically,
we recorded the maximum load observed during peak hours (typically between 5 p.m.
and 9 p.m.) and the minimum load during off-peak hours (usually from midnight to
early morning). This segmentation helped the model to distinguish between periods
of high and low demand, enhancing its ability to forecast accurately across different
times of the day. By providing the model with these segmented values, we enabled
it to capture and adapt to the distinct patterns characteristic of peak and off-peak
demand, which are critical for short-term load forecasting accuracy.

• Resolving AM/PM Inconsistencies:
Time inconsistencies related to AM/PM formatting were common in some datasets
and could interfere with temporal ordering. For instance, an entry incorrectly marked
as “PM” instead of “AM” could cause significant deviations in the load pattern
analysis, leading to inaccurate predictions. Using the datetime module, we converted
all timestamps to a uniform 24 h format, thus eliminating ambiguity and ensuring
that each record corresponded to the correct time of day. This consistency allowed
the model to extract reliable time-dependent features and improved its capability to
capture daily load cycles accurately.

Through these comprehensive preprocessing steps, we established a high-quality,
consistent foundation for our model’s training and evaluation phases. By addressing
critical issues such as missing values, duplicate entries, and timestamp inconsistencies, we
minimized noise and biases in the data. This systematic preprocessing framework enabled
our model, PredXGBR-1, to accurately capture short-term fluctuations in load demand, thus
enhancing its robustness and predictive power in real-world applications.
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5.2. Feature Extraction and Analysis
5.2.1. Seasonal Decomposition

The time series analysis of load consumption has been further explored using Seasonal
Decomposition to break down the data into its core components: trend, seasonal, and residual.
These components provide a deeper insight into the patterns of consumer load behavior
over the years. Seasonal decomposition typically employs a moving average method to
extract the trend, which reflects the long-term direction of the load consumption. The
seasonal component isolates the recurring patterns that happen at specific times, such as
daily, monthly, or yearly cycles, and the residual represents the remaining fluctuations once
both the trend and seasonal effects have been removed. These residuals help capture any
irregularities or anomalies in the data. Figure 4 illustrates the original data along with
the trend, periodic, and residual patterns of electrical load consumption for the PJM and
Dayton datasets, which are shown here as representative examples due to space limitations,
although additional datasets were also analyzed.
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Figure 4. The original data along with the trend, periodic, and residual patterns of electrical load
consumption for the PJM and Dayton datasets

We can observe distinct differences in the load consumption behavior between the PJM
and Dayton datasets. The PJM dataset exhibits a steady upward trend in load consumption
over the years, reflecting a general increase in energy demand. The seasonal component also
shows consistent periodic fluctuations, which are likely influenced by recurring yearly or
seasonal cycles. The residuals, while present, do not show significant deviations, indicating
relatively stable patterns beyond the trend and seasonality. In contrast, the Dayton dataset
reveals more variable behavior. The trend shows less consistency, with noticeable shifts,
particularly between 2008 and 2010, where a decline in load consumption is evident.
Additionally, the seasonal component appears more irregular in amplitude compared to
PJM, suggesting more pronounced or unpredictable seasonal effects in the Dayton area. The
residuals in the Dayton dataset also display greater variability, highlighting more frequent
anomalies or short-term fluctuations that cannot be attributed to trend or seasonality.

Moreover, a gradual upward trend, or gentle acclivity, is observed in the PJM dataset,
indicating a steady increase in load consumption over time. In contrast, the AEP dataset
reveals an opposing pattern, where the load consumption trend shows a more declining or
stagnant behavior compared to PJM. For the PJMW dataset, a sharp rise in load consumption
is noticeable between 2005 and 2006, reflecting a sudden increase in energy demand during
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this period. However, this trend reverses between 2008 and 2010, where a significant
decline is evident.

The variation in load consumption trends across these datasets can be attributed to
several factors, including changes in human behavior, regional weather conditions, and the
broader climate patterns of the respective areas. These factors exert a significant influence
on energy usage, highlighting how external conditions and social habits shape the overall
trend in energy consumption over time.

5.2.2. Temporal Features of Electric Load Consumption

In this study, three critical features are used to understand the electric load consump-
tion patterns: hour of the day, day of the week, and month of the year. These features offer
insights into how electricity demand fluctuates over different temporal dimensions:

• Hour of the Day:
This feature captures how electricity consumption varies throughout the 24 h daily
cycle. It provides a granular view of consumption patterns on an hourly basis, which is
crucial for identifying peak and off-peak hours. Typically, demand is lower during late
night and early morning hours (11 p.m. to 7 a.m.), when most residential, commercial,
and industrial activities are minimal. Conversely, consumption often peaks during the
morning and early evening, when individuals and businesses are most active. This
feature allows for a detailed examination of daily demand cycles and helps in load
forecasting and grid management.

• Day of the Week:
The day of the week feature distinguishes between weekdays and weekends, capturing
the variation in electricity demand that occurs based on the socio-economic activities
typically scheduled during the week. Weekdays (Monday through Friday) usually
show higher and more stable demand patterns due to the regular operation of in-
dustries, offices, and commercial establishments. Weekends, on the other hand, may
exhibit a drop in demand, particularly in commercial and industrial sectors, though
residential consumption may fluctuate depending on lifestyle habits.

• Month of the Year:
This feature reflects the seasonal variation in electric load consumption over the twelve
months, providing insight into how different times of the year impact electricity de-
mand. Seasonal changes drive consumption patterns, with summer months (e.g., July,
August) generally showing higher demand due to increased use of cooling systems,
while winter months (e.g., December, January) may reflect higher consumption due
to heating needs. Transitional seasons, such as fall and spring, tend to exhibit lower
and more stable consumption levels compared to the extremes of summer and winter.
Analyzing monthly data helps understand the impact of climatic conditions on load
demand, allowing for better planning and resource allocation.

This detailed examination of the hour of the day, day of the week, and month of the
year features allows for a comprehensive understanding of how electricity consumption
fluctuates on multiple temporal scales, which is critical for improving load forecasting
models and enhancing grid efficiency. Due to space limitations, Figures 5 and 6 present
heatmaps of the PJM and Dayton datasets as representative examples of temporal feature
analysis, although other datasets were also considered.

The analysis of load consumption patterns reveals consistent trends across both the
PJM and Dayton datasets, particularly in terms of temporal features. Hourly load variations
are similar between the two regions, with off-peak hours (11:00 p.m. to 7:00 a.m.) showing
the lowest demand. This period corresponds to reduced activity in residential, commercial,
and industrial sectors. Peak consumption occurs between 11:00 a.m. and 7:00 p.m., driven
by daytime activities. These hourly patterns are consistent over multiple years, indicating
stable consumption behaviors across both datasets.
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Figure 5. Heatmaps of different temporal features of PJM dataset.
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Figure 6. Heatmaps of different temporal features of Dayton dataset.

In terms of weekly consumption patterns, although not explicitly visualized in the
data, it is likely that both datasets follow typical trends, with higher electricity demand
observed during weekdays due to increased industrial and commercial activity. Week-
ends are expected to show relatively lower demand, predominantly reflecting residential
consumption, aligning with common load distribution patterns.

Regarding seasonal variations, both datasets exhibit notable changes in consumption
across the months of the year. Peak demand is observed during the summer months (July
and August), driven primarily by cooling needs. Conversely, the fall months (September
and October) show a reduction in load due to milder weather conditions. While the overall
trends remain consistent, the PJM dataset exhibits more pronounced seasonal fluctuations
compared to Dayton, potentially due to regional differences in population density and
economic activity.

6. Performance Evaluation
6.1. Evaluation Metrics

To rigorously evaluate the performance of PredXGBR-1 in short-term load forecasting,
we employed the MAPE and coefficient of determination (R2) as our primary metrics.
These metrics were chosen for their interpretability and relevance in assessing predictive
accuracy and goodness-of-fit, which are essential for reliable electric load forecasting.

The MAPE provides a measure of prediction accuracy in terms of percentage, making
it a useful metric for understanding relative forecasting errors. For each dataset, the MAPE
is calculated as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (8)

where yi is the actual load demand for the i-th instance, ŷi is the predicted load demand for
the i-th instance, and n is the total number of instances in the dataset. This metric captures
the average percentage deviation between the predicted and actual values, allowing us
to compare model performance across datasets with varying load profiles. Lower MAPE
values indicate higher accuracy in the model’s ability to forecast short-term fluctuations in
load demand.
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The coefficient of determination (R2) provides an indication of how well the model’s
predictions match the actual load demand values. It is defined as

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (9)

where yi is the actual load demand, ŷi is the predicted load demand, and ȳ is the mean of
the actual load demand values. The R2 metric captures the proportion of variance in the
actual load that is predictable from the model’s outputs, with values closer to 1 indicating a
better fit.

For each dataset, MAPE and R2 values were computed to assess the model’s per-
formance across different temporal patterns, providing a comprehensive evaluation of
the accuracy and reliability of PredXGBR-1. This evaluation approach, applied across five
datasets representing diverse load profiles, allowed us to validate the robustness and
generalizability of our model.

6.2. Optimal Parameter Selection

To achieve optimal performance for the PredXGBR-1 model in short-term load forecast-
ing, we carried out a systematic hyperparameter tuning process, focusing on adjusting
critical parameters that influence model accuracy and efficiency. This process involved a
grid search approach combined with cross-validation, allowing us to test a range of values
for each parameter and identify the best configuration.

Key parameters tuned for PredXGBR-1 included the learning rate, maximum depth of
trees, number of estimators, and regularization terms. The learning rate was varied between
0.01 and 0.3 to balance convergence speed and stability. We tested the maximum depth of
trees between 3 and 10 to control model complexity and mitigate the risk of overfitting,
particularly for datasets with diverse patterns. For the number of estimators, we explored
values from 50 to 300, enhancing model robustness while considering computational
efficiency. Regularization parameters, such as gamma (γ) and alpha (α), were adjusted to
further prevent overfitting by controlling tree complexity and the magnitude of leaf weights.

Each parameter configuration was evaluated using five-fold cross-validation, pro-
viding a rigorous assessment of model performance across different data subsets. This
cross-validation approach ensured that the final parameter set selected offered the best
balance between accuracy and generalizability, thereby reducing the risk of overfitting.

6.3. PredXGBR Performance Across Different Datasets

We conducted a comprehensive performance evaluation of the proposed short-term
lag-based XGBoost model, PredXGBR-1, alongside baselines including SVM, TCN, RNN,
LSTM, and Transformer models. This evaluation, conducted across five datasets (PJM [69],
PJME [70], PJMW [71], AEP [72], and Dayton [73]), utilized MAPE and R2 metrics to assess
the accuracy of short-term (Model1) and long-term (Model2) lag-based predictions. The
visualization in Figure 7 further supports these insights.

The results demonstrate that PredXGBR-1 consistently achieves the lowest MAPE and
highest R2 values across all datasets, indicating its superior performance in short-term
forecasting. For instance, in the PJM dataset, PredXGBR-1 attains an MAPE of 1.07%,
significantly outperforming both the SVM and TCN, which have MAPE values of 5.13%
and 19.46%, respectively. This represents an approximate 79% improvement over the SVM,
highlighting PredXGBR-1’s ability to capture short-term micro-trends effectively.

Additionally, PredXGBR-1 excels in R2 performance, achieving values close to 0.99 in
datasets like PJM and AEP. In contrast, TCN and Transformer models, while competitive,
are less responsive to short-term demand shifts due to their inherent design, which leans
toward long-term data patterns. This contrast underscores PredXGBR-1’s strength in reacting
to immediate fluctuations, an essential characteristic for short-term electric load forecasting.
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Figure 7. Comparative analysis of the MAPE and R2 value of the proposed approach: PredXGBR-1.



Electronics 2024, 13, 4521 20 of 26

The TCN and Transformer models, though effective, do not surpass PredXGBR-1 in
capturing rapid, short-term changes in demand, as seen in more volatile datasets like
PJMW. While TCN’s sequence-processing architecture offers advantages over RNNs and
LSTM, it remains less accurate than PredXGBR-1 in settings requiring high sensitivity to
micro-trends. Similarly, Transformer models excel in complex, long-sequence patterns
but are comparatively less effective in addressing immediate changes in short-term
load demand.

The observed differences in model performance across datasets, especially for the
RNN model, can be attributed to the unique temporal characteristics and demand patterns
within each dataset. RNNs, which rely on sequential dependencies to capture temporal
patterns, may encounter difficulties in generalizing effectively across datasets with varying
seasonality, load volatility, and trend shifts. For example, datasets like PJM and Dayton
exhibit more irregular and volatile patterns, posing challenges for RNN models due to
their sensitivity to sequential dependencies and susceptibility to issues like vanishing
gradients. These factors can result in inconsistent performance across different datasets. In
contrast, PredXGBR-1, with its XGBoost-based structure, demonstrates greater resilience to
these variations. By leveraging short-term lag features and a gradient-boosting framework,
PredXGBR-1 effectively captures nonlinear relationships and adapts to different demand
profiles, achieving more stable and accurate predictions across diverse datasets. This adapt-
ability underscores PredXGBR-1’s robustness in handling a range of temporal characteristics,
setting it apart from traditional sequential models like the RNN.

These findings, summarized in Table 3, confirm that PredXGBR-1’s design, cen-
tered on short-term lag features, not only yields precise and stable forecasts but also
enhances performances across various datasets. This makes PredXGBR-1 a robust
and responsive solution for real-world applications where adaptability and accuracy
are paramount.

Table 3. Detailed results for different models and datasets with MAPE and R2 values for Model1
(short-term lag) and Model2 (long-term lag).

Model Dataset Model1 MAPE Model2 MAPE Model1 R2 Model2 R2

SVM

PJM 5.13 6.87 0.96 0.71
PJME 5.80 8.59 0.96 0.63
PJMW 2.80 8.42 0.96 0.63
AEP 6.23 8.08 0.94 0.57

Dayton 7.36 8.49 0.93 0.62

RNN

PJM 19.46 19.44 0.92 0.93
PJME 9.49 9.58 0.93 0.93
PJMW 4.28 4.87 0.59 0.90
AEP 7.86 7.49 0.57 0.89

Dayton 12.74 15.54 0.62 0.87

LSTM

PJM 19.96 21.12 0.92 0.89
PJME 9.21 9.57 0.93 0.92
PJMW 4.70 4.71 0.91 0.92
AEP 7.00 7.46 0.93 0.91

Dayton 10.80 15.46 0.92 0.89

TCN

PJM 19.46 19.44 0.92 0.93
PJME 7.85 9.20 0.95 0.90
PJMW 3.90 4.55 0.88 0.91
AEP 7.86 7.49 0.57 0.89

Dayton 12.74 15.54 0.62 0.87
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Table 3. Cont.

Model Dataset Model1 MAPE Model2 MAPE Model1 R2 Model2 R2

Transformer

PJM 19.96 21.12 0.92 0.89
PJME 8.10 9.45 0.94 0.89
PJMW 4.05 4.60 0.89 0.90
AEP 7.00 7.46 0.93 0.91

Dayton 10.80 15.46 0.92 0.89

PredXGBR

PJM 1.07 6.87 0.99 0.71
PJME 1.28 8.59 0.99 0.58
PJMW 1.07 8.42 0.98 0.59
AEP 0.98 8.08 0.99 0.57

Dayton 1.12 8.49 0.99 0.62

6.4. PredXGBR Generalization Performance

The generalization performance of the proposed PredXGBR-1 model, as shown in
Figure 8, underscores its effectiveness in maintaining accuracy when trained on one dataset
and tested on others. Across all scenarios, PredXGBR-1 achieves lower MAPE and higher R2

values compared to the baseline models SVM-1 and TCN-1, indicating a clear advantage in
adapting to unseen data.

In detail, when trained on the PJM dataset, PredXGBR-1 demonstrates substantial
improvements in MAPE across all test datasets, consistently achieving values below 5%,
whereas SVM-1 and TCN-1 reach MAPE values between 7% and 10% for most cases. This
pattern persists when trained on other datasets such as PJME, PJMW, and AEP, where
PredXGBR-1 consistently records a lower MAPE, often by a margin of 3–5% compared to
SVM-1 and TCN-1. For instance, when trained on the AEP dataset, PredXGBR-1 achieves an
MAPE of around 1% on other datasets, while SVM-1 and TCN-1 exhibit higher MAPE val-
ues, underscoring PredXGBR-1’s robustness in preserving forecast accuracy across different
test sets.

In terms of R2 values, PredXGBR-1 maintains values close to or above 0.95 across
most test scenarios, highlighting its strong correlation with actual data. In contrast, SVM-
1 and TCN-1 show more variability, with R2 values occasionally dropping below 0.9,
particularly in cross-dataset scenarios. This discrepancy reinforces that PredXGBR-1 captures
and generalizes short-term load variations better than the baseline models.

Overall, Figure 8 demonstrates that PredXGBR-1 not only achieves a lower MAPE but
also maintains high R2 values across diverse datasets, emphasizing its superior generaliza-
tion capability. This performance makes PredXGBR-1 a more reliable choice for applications
requiring stable short-term forecasting across regions with varying load characteristics.
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Figure 8. Analysis of the generalization performance of PredXGBR-1 when compared with two of the
best-performing models—SVM and TCN. Models are trained with one dataset and tested with others.

6.5. Computational Complexity and Inference Time

In this section, we analyze the computational complexity and inference time of the
evaluated models, as shown in Figure 9. The computational complexity, represented in giga
floating point operations per second (GFLOPS), estimates the processing power required by
each model, while inference time (in milliseconds) reflects the time taken for each model to
generate predictions. These inference times were measured on a Linux-based workstation
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equipped with a 12th Gen Intel(R) Core(TM) i7-12700K CPU, an NVIDIA RTX A4000 GPU,
and 64 GB of RAM.
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Figure 9. Comparative analysis of the computational complexity (FLOPS) and inference time of
PredXGBR-1 (Model1).

The results indicate that models with long-term lag features, such as Transformer-2
and LSTM-2, demand higher computational resources and exhibit longer inference times
compared to their short-term counterparts. For instance, Transformer-2 has the highest
computational burden at 10 GFLOPS and an inference time of 2.9 ms, followed closely
by LSTM-2 at 9.18 GFLOPS and 2.56 ms. This elevated demand stems from the need to
capture extended temporal patterns (e.g., weekly and monthly trends), which increases
input dimensionality and processing requirements.

Conversely, short-term lag models, particularly PredXGBR-1, are significantly more
efficient. PredXGBR-1, with a computational burden of only 1.5 GFLOPS and an inference
time of 0.2 ms, is approximately 93% faster in inference time and 85% less computationally
demanding than Transformer-2. This efficiency makes PredXGBR-1 well suited for real-time
applications, where low latency is crucial. Among neural network models, TCN-1 and
SVM-1 also show competitive performance, with TCN-1 requiring 5.5 GFLOPS and an
inference time of 1.2 ms, and SVM-1 being the most efficient at only 1.0 GFLOPS and an
inference time of 0.15 ms, underscoring their potential for low-resource environments.

Overall, while long-term lag models provide a more comprehensive temporal context,
they incur higher computational costs. Short-term lag models, particularly PredXGBR-1,
achieve a balance between computational efficiency and predictive accuracy, making them
ideal for scenarios requiring rapid responses and low-latency predictions.

7. Conclusions

In this paper, we introduced a short-term feature-based XGBoost model, PredXGBR-1,
designed to address the limitations of traditional and probabilistic methods in electric
load forecasting. By leveraging time-lagged features from the previous 24 h, our model
captures short-term fluctuations in demand with remarkable accuracy. We rigorously
evaluated PredXGBR-1 across five different datasets representing twenty years of electrical
load data from various regions in the USA. Our comparative analysis between long-
term and short-term feature-based models highlighted the significance of focusing on
short-term lag features. While traditional models like the RNN and LSTM demonstrated
moderate accuracy, PredXGBR-1 consistently outperformed them with an average MAPE of
0.98–1.2% and an R2 score close to 1, signifying near-perfect predictive performance. This
level of accuracy makes PredXGBR-1 a highly reliable model for real-time, short-term load
forecasting, especially in environments with rapidly fluctuating demand. The findings
presented in this paper underscore the robustness and adaptability of PredXGBR-1, paving
the way for more efficient and precise forecasting in the electric power sector.
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