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Abstract—Recent advances in Wi-Fi sensing have ushered in a
plethora of pervasive applications in home surveillance, remote
healthcare, road safety, and home entertainment, among others.
Most of the existing works are limited to the activity classification
of a single human subject at a given time. Conversely, a more
realistic scenario is to achieve simultaneous, multi-subject activity
classification. The first key challenge in that context is that the
number of classes grows exponentially with the number of subjects
and activities. Moreover, it is known that Wi-Fi sensing systems
struggle to adapt to new environments and subjects. To address
both issues, we propose SiMWiSense, the first framework for
simultaneous multi-subject activity classification based on Wi-Fi
that generalizes to multiple environments and subjects. We ad-
dress the scalability issue by using the Channel State Information
(CSI) computed from the device positioned closest to the subject.
We experimentally prove this intuition by confirming that the best
accuracy is experienced when the CSI computed by the transceiver
positioned closest to the subject is used for classification. To ad-
dress the generalization issue, we develop a brand-new few-shot
learning algorithm named Feature Reusable Embedding Learning
(FREL). Through an extensive data collection campaign in 3 dif-
ferent environments and 3 subjects performing 20 different activ-
ities simultaneously, we demonstrate that SiMWiSense achieves
classification accuracy of up to 97%, while FREL improves the
accuracy by 85% in comparison to a traditional Convolutional
Neural Network (CNN) and up to 20% when compared to the
state-of-the-art few-shot embedding learning (FSEL), by using
only 15 seconds of additional data for each class. For reproducibil-
ity purposes, we share our 1TB dataset and code repository1 [1].

I. INTRODUCTION

Wi-Fi is one of the most pervasive wireless technologies

worldwide – it has been estimated that by 2025, the Wi-Fi

economy will reach a value of $4.9T [2]. Beyond ubiqui-

tous indoor connectivity, Wi-Fi also allows to develop highly-

pervasive device-free sensing applications. The latter are based

on the intuition that the received Wi-Fi signals – in particular,

the Channel State Information (CSI) computed to perform

channel estimation and equalization – are affected by changes

in the physical environment caused by any entity in between

the source and the receiver. Among other applications, Wi-Fi

sensing can be used for fine-grained indoor localization [3],

activity recognition [4], [5], and health monitoring [6]. For an

excellent survey on the topic, we refer the reader to [7].

Most of the relevant existing work – discussed in detail in

Section V – focuses on performing classification of a single

subject at a given time [8]–[11]. Even though achieving accept-

able sensing performance, a significantly more relevant (and

1https://github.com/kfoysalhaque/SiMWiSense

realistic) problem is performing simultaneous, multi-subject
Wi-Fi sensing. Moreover, it is well known that Wi-Fi sensing

is highly-dependent of the considered subject and environment

[12]. Although some attempts to address the issue have been

made, they consider few activities – less than 5 [13] – or do not

consider multi-subject classification [10].
In stark contrast to the existing works, we propose

SiMWiSense, a completely novel approach for simultane-

ous multi-subject activity classification through Wi-Fi. Fig-

ure 1 shows a high-level overview of our approach. Be-

yond the generalization issue, the key challenge addressed by

SiMWiSense is that by defining as n and m respectively

the number of subjects and activities, the number of classes

to distinguish becomes nm. For example, 3 subjects and 10

activities correspond to more than 59,000 classes.

Fig. 1: High-level overview of SiMWiSense.

To address this critical issue, we utilize multiple Wi-Fi de-

vices as CSI collectors, where the closest to a given subject will

classify the activities conducted by that subject. We experimen-

tally prove in Section II that the device closest to the subject will

dominantly characterize the channel property between itself

and the source of the Wi-Fi signal. Finding the closest device to

a given subject falls under the Wi-Fi indoor localization and/or

fingerprinting problem [14]–[16], which has been thoroughly

investigated and thus considered out of our scope. Although

assigning a device to a subject addresses the scalability issue –

the classifier output becomes m sized – the overall performance

may significantly degrade with new untrained environments and

subjects. Thus, we developed a novel Few-Shot Learning (FSL)

architecture which can adapt to any new environment, change
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in environment or any new subject with up to 15 seconds of new

data for each class.

Summary of Novel Contributions
• We present SiMWiSense, the first framework for multi-

subject simultaneous activity classification using Wi-Fi (Sec-

tion III). Unlike existing approaches, SiMWiSense can dis-

tinctly classify among different human subjects performing

multiple activities simultaneously by utilizing multiple CSI

collectors, each associated to a given subject;

• To address the challenge of generalizing to new environ-

ments and subjects, we propose a novel FSL-based architecture

called Feature Reusable Embedding Learning (FREL). In stark

contrast to existing approaches, FREL can adapt to any new

environment and subject through two main steps, namely meta-

learning and fine-tuning. Moreover, in contrast to the traditional

FSL, FREL combines both the embedding learning and meta-

learning approaches to achieve better performance through fine-

tuning the classifier with only a few additional samples (Section

III);

• We extensively evaluate SiMWiSense through an ex-

haustive data collection campaign in 3 different environments

and with 3 subjects performing 20 different activities simul-

taneously. We demonstrate that SiMWiSense achieves clas-

sification accuracy of up to 98%, while FREL improves the

accuracy by 85% in comparison to a traditional convolutional

neural network (CNN) and up to 30% when compared to the

state of the art few-shot embedding learning (FSEL) [17], by

only using 15 seconds of additional data for each class. For
reproducibility, we share our whole dataset, captured video
streams of the activities as ground truth, and our code
repository [1].

II. SENSING PROXIMITY TEST

Wi-Fi sensing leverages tiny changes in the CSI computed

through pilot symbols included in the physical layer (PHY)

preamble. Although the CSI may be captured by monitoring

a transmission link between Access Point (AP) and the sta-

tions (STAs) without any direct communication with the AP, a

monitoring device captures the CSI of the propagation channel

between itself and the AP. Thus, when the CSI monitors are

spatially distant enough, they would monitor the independent

propagation path between the corresponding antenna pair of

the AP and itself [18]. Our key intuition is that the captured

CSI is dominantly characterized by any physical change in the

environment at spatially closer proximity.

To evaluate this, we perform the following extensive prelim-

inary tests which demonstrate the viability of our key concept.

We have performed the sensing proximity test in 3 different

environments with 3 different subjects and 20 activities. We

assign a CSI monitor to each of the subjects. The monitors are

placed at a distance of 1.5m - 3.0m from each other, whereas

one human subject performs activity at a distance of 1.5m

- 2.0m from each of the sensing monitors for each of the

environments. We considered three different environments as

explained in Section IV-A. The experimental setup is shown

in Figure 2. We define the subjects with the closest proximity

to the CSI Monitor 1, CSI Monitor 2 and CSI Monitor 3 as

Subject 1, Subject 2 and Subject 3, respectively. From each

environment, CSI is collected in three separate rounds where

in every round a subject does 20 different activities and other

subjects perform random activities.

Fig. 2: SiMWiSense proximity test.

Figure 3 confirms our intuition. For example, it shows that

in the classroom environment, the accuracy of Subject 1 is

95% from the CSI data of Monitor 1 whereas, with the exact

same setup and tests, the accuracy of Subject 2 and Subject 3

decreases by 30% on an average with Monitor 1. This is because

they are comparatively farther away from Subject 1 and more

prone to the noises created by the other subjects at that instant.

However, their performances improve drastically to 96% and

97% when we consider CSI Monitor 2 and CSI Monitor 3 for

Subject 2 and Subject 3 respectively. The other two environ-

ments follow similar trends. This clearly demonstrates that
the CSI monitor closest to the subject performs better than
other CSI monitors.
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Fig. 3: Classification accuracy as function of sensing proximity.

III. OVERVIEW OF SIMWISENSE

We describe the SiMWiSense framework dividing it into

three main task blocks: (i) sensing block (ii) preprocessing

block and (iii) learning block as presented in Figure 4.
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Fig. 4: Overview of SiMWiSense and Processing Blocks.

A. SiMWiSense Sensing and Preprocessing Blocks

The sensing block of SiMWiSense collects the CSI of

Wi-Fi transmissions. Modern Wi-Fi systems are based on the

Orthogonal Frequency Division Multiplexing (OFDM) modu-

lation which processes multiple data streams in parallel over

multiple orthogonal subcarriers. Each spatially diverse CSI

monitor captures S samples during the time interval T = t− t′

with K orthogonal parallel subcarriers. Thus, the extracted CSI

matrix of an M ×N system is shown in Equation 1.

Hm,n
r =

⎡
⎢⎢⎢⎢⎢⎢⎣

hm,n
1,1 . . . hm,n

1,s . . . hm,n
1,K

...
...

...

hm,n
s,1 . . . hm,n

s,s . . . hm,n
s,K

...
. . .

...
. . .

...

hm,n
S,1 . . . hm,n

S,k . . . hm,n
S,K

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

Here, Hm,n
r denotes the CSI matrix at receiver r of the

transmit antenna m and receive antenna n where 1 ≤ n ≤ N
and 1 ≤ m ≤ M . The value hm,n

k,s denotes the CSI of the

S-th sample at K-th subcarrier from transmit antenna m to

the receive antenna n. For example, during the time interval

T = 0.2s, if any CSI monitor captures S = 600 samples

with a channel of 80 MHz bandwidth, Hm,n
r will have S ×K

components where K = 242. It is worthwhile mentioning

that even though the total number of subcarriers in 80 MHz

channel is 256, we only consider data-transmitting subcarriers

discarding the null and the guard ones.

After the collection of the CSI samples, we preprocess the

captured data, as presented in Figure 5, before it is fed to the

learning block. After S samples are collected, we align the data

by discarding the missing and/or corrupted CSI measurements.

Moreover, any abrupt amplification in the data is removed by

normalizing with the mean CSI amplitude. Then, the captures

are segmented with a fixed size non-overlapping window along

the time domain. If the total number of samples captured during

any time interval T is S, such that T = T1+T2+T3+.......+Tn

where T is divided into n equal time windows, S = S1 + S2 +
S3 + ........ + Sn are the corresponding sample captures of the

n time segments. Thus, each window has the tensor dimension

of Sp×K ×N where Sp is the number of samples in p-th time

window Tp, and N = 2 is the complex CSI measurement. This

processed data is then fed to the input of the learning block.

Fig. 5: CSI data processing in SiMWiSense

B. SiMWiSense Learning Block

One of the challenges in multi-subject detection is scalability.

For P persons and Q activities, it has QP possible combi-

nations, resulting in an exponential increase in the number

of classes. One centralized model to classify multi-subject

activities becomes difficult when P and Q are large. To tackle

this problem, we propose a decentralized detection system for

each subject. Specifically, a learning model is assigned to each

device to sense the subject which is closest to it. Therefore,

each subject only requires Q detection regions in hyperspace.

For P subjects, the overall complexity reduces to P × Q. This

sensing system has two assumptions: (i) there will be at least

the same number of CSI collectors as subjects; (ii) the subject

closest to the device take the most significant part in shaping the

channel property between the device and AP. Assumption (i)

is reasonable since nowadays, almost everyone is inseparable

from their smart devices, such as laptops or smartphones, in

their work and daily lives. For (ii), we developed an experiment

based on sensing proximity as shown in Section II.

Fig. 6: Cascaded Learning Block.

To further decrease complexity, we propose a cascaded

model for two-stage detection. As shown in Figure 6, in the

first stage, a deep learning (DL) model is used to discriminate

different subjects S coarsely. After the coarse detection, another

fine-grained DL model is used to determine the activities A.

Regardless of the output at the first stage, all the subjects will

share the same fine-grained model at the second stage. Thus,

the overall complexity becomes P +Q.
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One challenging problem of the hierarchical detection model

is that even if different persons do the same activities, their

movements will have personal patterns and gestures. Further-

more, subjects may join or leave the detection system. Thus, it

is impractical to have a universal classifier for activity detec-

tion. In addition, the performance of data-driven algorithms in

wireless sensing usually will be downgraded by time-varying

channel conditions. Thus, we need a model which can swiftly

adapt to new subjects and channel features.

C. FREL Learning Algorithm

We propose a novel FSL architecture named FREL, which

allows the DL model to adapt to new scenarios with only a

few data. We utilize this algorithm in both subject detection and

activity detection stages. Next, we will discuss the algorithm in

detail. FSL aims at training models that can rapidly generalize

to new tasks with only a limited number of labeled samples,

is a strong candidate to tackle the data collection problem.

One approach to FSL is to learn an embedding for multiple

tasks [19], [20]. Specifically, a deep neural network (DNN)

is used to learn a clustered mapping from input to the latent

space. During the inference time, the embedding network does

not need to be fine-tuned, and a few samples will be used as

references to classify unobserved data. Another approach is

meta-learning [21], [22] which involves two phases: (i) meta-

training and (ii) fine-tuning. Meta-learning aims to learn shared

features between different tasks during the meta-learning phase

and quickly optimize the parameters with a few data points

during the fine-tuning stage.

Fig. 7: Feature Reusable Embedding Learning (FREL).

For the first time, FREL combines embedding learning and

meta-learning. Figure 7 demonstrates the structure of our FREL

model. First, a DNN model is used to learn the embedding of

the input and another classifier is used to decode the features in

the latent space. Similar to meta-learning, the FREL consists of

meta-learning and fine-tuning stages. We train the embedding

network and classifier jointly with a mini-dataset during the

meta-learning phase, which is the same as embedding learning.

After obtaining the embedding, we further optimize the classi-

fier with a few samples while testing. In contrast to embedding

learning, we believe fine-tuning can provide better flexibility

and granularity, which is more suitable for a dynamic sys-

tem. Different from meta-learning, we only retrain the simple

classifier instead of the whole structure, which can reduce the

computation, enabling a faster adaption to new tasks. This

design is inspired by [23], which shows that the effectiveness of

meta-learning is mainly due to feature reuse. It is a simplified

version of MAML [21] that fine-tunes the last few layers which

can achieve comparable performance as the original algorithm.

Formally, we consider the embedding network as a function

Eθ : X → Z, where Z denotes the latent vector. The classifier

Cφ : Z → Y is to find a mapping between encoded features Z
and labels Y . θ and φ are the trainable parameters of the em-

bedding network and classifier, respectively. Hence, The overall

system Fψ(X) = Y can be written as Cφ(Eθ(X)) = Y ,

where ψ = {θ, φ} is the total trainable parameters of the

whole system. In FREL, models are trained on a set of mini-

batches of data that only have N different classes (ways) and

K samples (shots) of each class. Each batch of few-shot data

can be considered as a new task τj = {(xj
i , y

j
i )}|mi=1 in meta-

learning. m = N × K denotes the total number of samples

in one batch. The objective of meta-learning is to find a set of

parameters ψ that minimize the expectation of the loss function

L with respect to a group of meta-learning tasks T = {τj}|nj=1,

i.e.,

min
{θ,φ}

1

n

n∑
j=1

[
1

m

m∑
i=1

L(Cφ(Eθ(x
j
i )) = yji )] (2)

We merge the task set T into a single dataset Dtrain to get a

better embedding, which is given by

D
train = τ1 ∪ · · · ∪ τj ∪ · · · ∪ τn

= {(x1
i , y

1
i )}|mi=1 ∪ · · · ∪ {(xn

i , y
n
i )}|mi=1

(3)

We notice that by merging multiple tasks into single dataset,

the optimization problem in Equation 2 can be reduced to a

general DL problem, which can be solved by a gradient decent

optimizer iteratively,

{θ, φ} = {θ, φ} − α
1

mn

mn∑
i=1

∇{θ,φ}L(Cφ(Eθ(xi)), yi) (4)

where mn is the total number of data points in D
train and α is

the learning rate. Once the optimal embedding θ∗ is obtained,

the classifier is fine-tuned on another small portion of data

D
tune. Unlike training on a combined set during the meta-

learning, each iteration we randomly sample K shots from each

of N ways in D
tune to build a new task τ and update classifier

by gradient decent,

φ = φ− β
1

m

m∑
i=1

∇φL(Cφ(Eθ∗(xi)), yi) (5)

where β denotes the learning rate in the fine-tuning phase.

Finally, performance is evaluated on the rest of unseen dataset

D
test.

We summarize FREL in Algorithm 1. It is worth pointing out

that although FREL is proposed for WiFi sensing initially, the

architecture is presented generally since it can be used for other

FSL purposes. Next we discuss the specific setup that is used in

the SiMWiSense learning block.

• Embedding network: Figure 8 shows the DNN architec-

ture we use for embedding learning in FREL. It is composed

of 4 convolutional layers followed by batch normalization and

Rectified Linear Unit (ReLU) activation. Each convolutional
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layer comprises 64 channels with a kernel size of 3 × 3. After

the first three convolutional layers, 2 × 2 Max pooling layers

are used to down sample the previous layer’s output. After the

fourth convolutional layer, a global average pooling strategy is

chosen to extract the feature to the latent space, resulting in a

64-dimensional feature space.

Algorithm 1: Feature Reusable Embedding Learning

Phase 1: FREL meta-learning
Require: learning rate α, dataset Dtrain

Initialize: θ for embedding, φ for classifier

for iteration = 1, 2, ... do
update θ and φ with D

train by Equation 4

end
Return: θ∗ for embedding

Phase 2: FREL fine-tuning
Require: learning rate β, dataset Dtune

Initialize: φ for classifier

for epoch = 1, 2, ... do
for episode = 1, 2, ... do

sample a task τ = {(xi, yi)|mi=1} from D
tune

update φ with τ by Equation 5
end

end
Return: φ∗ for classifier

• Classifier: A fully-connected layer is used on top of

the pre-trained embedding network as a linear decoder. Non-

linearity functions such as ReLU are not applied since we aim

to study the efficacy of the overall FREL’s design rather than

develop complicated DNN models. To investigate the effective-

ness of fine-tuning in FREL, we also implement an untrainable

K-Nearest Neighbor (K-NN) algorithm as a comparison after

the meta-learning phase following the same procedure as an-

other state-of-the-art FSEL model [17]. During the inference

time of K-NN, K samples from each class are transformed

into embedding as supports, and the queries are classified by

a plurality vote of the K nearest supports.

• Mini-dataset: Usually in general FSL, the dataset such as

Omniglot [24] and Mini-ImageNet [19] contains a large number

of tasks and a few number of samples in each task. Algorithms

are first pre-trained on multiple tasks and then fine-tuned and

tested on single specific task. However, it is never feasible to

get a dataset with comprehensive tasks in wireless sensing since

the changing environment can always generate new tasks that

models have never seen before. Thus, one significant difference

in our implementation is the mini-dataset. We only utilize

limited number of data collected in 15 seconds for D
tune.

The test set Dtest is never exposed to the model during pre-

training and fine-tuning. The mini-dataset makes the problem

more challenging as models are learned from not only a few

samples but a few tasks.

• Learning strategy: We evaluate our model with 5-shot

learning, which means we have 5 samples for each class in

every mini-batch data. We choose Adam as the optimizer in

both phases. The learning rate α and β are 0.01. Cross-entropy

loss is used during the pre-training and fine-tuning stages

for simplicity. Other metrics such as deep k-means [25] and

prototypical loss [20] can be applied for different purpose.

Fig. 8: CNN Embedding Network.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
We evaluate the multi-subject sensing capability of

SiMWiSense as well as the generalizing feature of FREL

through an extensive data collection campaign in 3 different

environments: classroom, office and kitchen with 3 human

subjects performing 20 different activities in random order. We

used off-the-shelf Netgear Nighthawk X4S AC2600 routers to

set up the network, whereas IEEE 802.11ac compliant Asus RT-

AC86U routers with Nexmon tool are used as the CSI extractor

[26].

Fig. 9: Experimental Setup of SiMWiSense.

The AP and the STAs are configured with M = 3 antennas

and Nss = 3 spatial streams, while the CSI monitors are
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configured with M = 1 antenna and Nss = 1 spatial streams

respectively. We send UDP packets from AP to the STAs to

trigger the CSI monitors. The CSI has been collected at center

frequency fc = 5.21GHz (i.e., channel 42) with signals having

80 MHz bandwidth. Three CSI monitors were placed in each of

the environments at a distance of 1.5m - 2.0m from each other

as shown in Figure 9. Three different subjects performed all the

20 activities: push forward, rotate, hands up and down, waive,
brush, clap, sit, eat, drink, kick, bend forward, wash hands, call,
browsing phone, check wrist, read, waive while sitting, writing,
side bend, and standing at a distance of 1.5m -2.0m from the

CSI monitors.

Three separate models are trained for each of the monitors

with the data of each corresponding subject performing the

activities while the other subjects do random activities. For

example, the model for Monitor 1 is trained with Subject

1 performing each of the 20 activities for 5 minutes while

Subject 2 and Subject 3 perform different random activities in

random order. Similarly, the data from each of the monitors

are collected at the mentioned three different environments and

for each subject. To evaluate the simultaneous multi-subject

sensing, testing data has been collected while different sub-

jects perform randomly chosen activities simultaneously. The

experimental setup and the activity zone of the subjects at the

mentioned three experimental sites are presented in Figure 10.

To create the ground truth, we captured the video streams of the

subjects performing different activities in synchronization with

the data collection.

Fig. 10: Data collection locations.

B. Performance Evaluation of SiMWiSense

A time window size of 0.1s is considered for data segmen-

tation, while each data window has 50 samples for all the tests

performed in IV-B. Firstly, we do the performance evaluation

of our two-stage detection system: (i) subject identification (ii)

activity classification with baseline CNN as shown in Figure

8. Then, we demonstrate the generalization capability of FREL

in both of the stages of the detection system and compare the

performance of FREL with both baseline CNN and state-of-the-

art FSEL [17] model. In the rest of IV-B, Monitor 1, Monitor

2 and Monitor 3 are denoted as M1, M2, and M3 respectively

whereas Subject 1, Subject 2 and Subject 3 are presented as

Sub1, Sub2 and Sub3 respectively.

Baseline CNN: In the first step of the two-stage

SiMWiSense detection, each CSI monitor classify Sub1,

Sub2, Sub3 or ”no activity”. The subject identification per-

formances of each of the monitors in three environments are

presented in Figure 11.

80

85

90

95

100

M1 M2 M3

Ac
cu

ra
cy

 (%
)
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Fig. 11: Subject identification in SiMWiSense with baseline

CNN

The results show that with the baseline CNN, the average

accuracy of M1, M2 and M3 across all three environments

are 95.47%, 96.68% and 97.34% respectively, which shows

no significant performance discrepancy. On the other hand,

the average performances in three different environments are

95.73%, 98.77% and 94.87% respectively which shows an

average of 3.51% performance boost in office compared to

the other environments. It is caused by the Non-line-of-sight

propagation between the monitors and the distant subjects due

to the presence of desks and computers, causing less noise in

identifying the closest subject.

The simultaneous multi-subject activity classification perfor-

mance of SiMWiSense with baseline CNN is presented in

Figure 12. The average accuracy in the environments: office,

classroom and kitchen are 98.51%, 97.37% and 97.49% respec-

tively which follows the similar trend in performance depicting

the stability and robustness of SiMWiSense. Moreover, the

performance discrepancy of monitors M1, M2 and M3 are less

than 2% achieving an average accuracy of 98.0%, 96.84% and

98.54% respectively with M1, M2 and M3.

Performance as a function of subcarrier resolution: It is

known that Wi-Fi sensing performs worse with lower subcarrier

resolutions [6], [27]. To compensate the lower subcarrier res-

olution, one can adopt extensive feature extraction techniques

or higher sampling frequency which would increase the com-

putation burden by intensifying the pre-processing steps and

learning process dramatically. This stimulates us to study the

trade-off of the subcarrier resolution and the SiMWiSense
performance.

Figure 13 shows the performance of SiMWiSense as a

function of the number of subcarriers. The first consecutive 20,
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Fig. 12: Performance of SiMWiSense at three different envi-

ronments with baseline CNN as presented in Figure 8
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Fig. 13: Performance of SiMWiSense with baseline CNN as

a function of number of subcarriers (environment: classroom).

40, 80 and 160 and 242 subcarriers are considered to emulate

a sensing system with a lower bandwidth - thus, less number

of consecutive subcarriers. The results show that the average

performance of monitors decrease to 84.92% when the number

of subcarriers decrease from 242 to 80, and it goes down to

62.76% with a percent decrease of 34.94 when we switch to

only 20 subcarriers. Figure 14 presents the confusion matrices

of baseline CNN when trained with 242 and 20 subcarriers

respectively where they achieved an accuracy of 98.66% and

64.37% respectively. It is evident that, with only 20 subcarriers,

the model gets confused with few activities whereas it performs
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Fig. 14: Confusion matrices of baseline CNN with 242 and 20

subcarriers respectively (in classroom, with monitor M2).

comparatively better in other activities. The top three classes

which are hardest to distinguish at lower subcarrier resolutions

are: wash hands (index 17), rotate (index 10), and brush (index

15). However, it is noticeable that when we switch to 20

subcarriers from 242, the input tensor dimension reduces by 12

times from 50×242×2 = 24200 to 50×20×2 = 2000 and still

achieve around 64% accuracy on an average in the considered

scenarios.

SiMWiSense performance with FREL: Even though the

performance of the traditional CNN is quite good, they fail to

generalize the environments or subjects. In such instances for

generalizing to new environments and subjects, FREL excels

in comparison to the traditional CNN. The performance of

the FREL in new untrained environment are presented and

compared with traditional CNN and FSEL [17] in Figure 15

and Figure 16 respectively. The results show that the overall

performance of SiMWiSense with FREL in new untrained

environments improves by 86.06%, 87.56% and 86.90% when

the embedding network is trained in classroom, office and

kitchen respectively in comparison to the baseline CNN. The

highest performance achieved by FREL in any new untrained

environment is 97.24% in the kitchen with monitor M1 whereas

the lowest accuracy is 89.33% in the kitchen with monitor

M2. Thus, it demonstrates the robustness, reliability and strong

adaptive capability of FREL to new environments. As shown

in Figure 16, FREL surpasses the FSEL by 25.71%, 17.43%,

and 15.56% respectively when the FREL is trained in the

classroom, office and kitchen and tested on other corresponding

environments.

25
50
75

100

M 1 M 2 M 3

Ac
cu

ra
cy

 (%
)

Training Environment: Classroom
Office-FREL 
Office-CNN 

Kitchen-FREL 
Kitchen-CNN

25
50
75

100

M 1 M 2 M 3

Ac
cu

ra
cy

 (%
)

Training Environment: Office
Classroom-FREL 
Classroom-CNN 

Kitchen-FREL 
Kitchen-CNN

25
50
75

100

M 1 M 2 M 3

Ac
cu

ra
cy

 (%
)

Training Environment: Kitchen
Classroom-FREL 
Classroom-CNN 

Office-FREL 
Office-CNN

Fig. 15: Performance of FREL in simultaneous activity sensing

with new untrained environments.

Figure 17 presents the confusion matrices of FREL and

FSEL when trained with monitor M1 in the classroom and

tested with monitor M1 in the office. It is evident from Figure

17b that the accuracy drop of FSEL is caused by a few activities

which it finds difficult to distinguish. The top three activities
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Fig. 16: Performance comparison of FREL with FSEL in new

untrained environments.

0 5 10 15

0

5

10

15

Predicted Activity

A
ct

u
al

A
ct

iv
it

y

0 0.5 1

(a) FREL, accuracy: 95.96%

0 5 10 15

0

5

10

15

Predicted Activity

A
ct

u
al

A
ct

iv
it

y

0 0.5 1

(b) FSEL, accuracy: 78.24%

Fig. 17: Confusion matrices for FREL and FSEL when trained

in classroom, with monitor M1 and tested in office, with moni-

tor M1.

which FSEL finds most difficult to distinguish are waiving

while sitting (index 18), rotating (index 10) and eating (index

3). On the other hand, the top three distinct activities for FSEL

are drinking (index 6), waiving (index 8) and phone call (index

13).

FREL in generalizing subject identification across envi-
ronments: FREL can also generalize the subject identification

in new untrained environments, as presented in Figure 18. In

fact, it can achieve up to an accuracy of 96.53% whereas

the traditional CNN only limits to 6.19% compared to the

93.53% for FREL on an average across the monitors and the

environments.

As depicted in Figure 19, when compared to FSEL, proposed

FREL demonstrates an accuracy boost of 17.79%, 17.93%, and

17.55% in classroom, office and kitchen, respectively. Thus,

FREL signifies stable and reliable performances across the

environments in generalizing the ’subject identification’ phase

of the learning also.

FREL in generalizing the monitors across the environ-
ment: It would be interesting to see how a FREL model trained
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Fig. 18: Performance of FREL as the subject identifier in

untrained environments
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Fig. 19: Performance comparison of FREL and FSEL as the

subject identifier in untrained environments

in one monitor can adapt and generalize to other monitors,

thus generalizing new subjects of the same environment. It

would further lessen the training time and drastically reduce

the system deployment complexity. Figure 20 presents the

performance of FREL with new untrained monitors across

the three different environments. It can achieve an average

accuracy of 91.71%, 94.51% and 94.78% in generalizing the

other monitors while trained with Monitor 1, Monitor 2 and

Monitor 3, respectively. Thus FREL enables any system to be

trained only on one monitor and deployed with n number of

monitors with only 15s new data samples from each monitor.

V. RELATED WORK

A significant amount of research in Wi-Fi sensing has been

performed over the last few years. The reader may refer to

the following surveys for a good compendium of the state of
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Fig. 20: Performance of FREL with new untrained monitors.

the art [7], [28], [29]. There have been several approaches

to address the challenges of Wi-Fi sensing, which includes

received signal strength indicator (RSSI) based approaches

[30], [31], and passive Wi-Fi radar (PWR) [32], [33]. Wi-Fi

sensing leveraging beamforming feedback information (BFI)

which can be captured from any Wi-Fi network is the state-

of-the-art approach [34]. However, CSI-based Wi-Fi sensing is

by far the most popular approach.

DL has already been proven to be effective in various CSI-

based Wi-Fi sensing applications, including human activity

classification [35]–[37], gesture recognition [38], [39], health-

monitoring [40]–[42], human counting [43], [44], indoor local-

ization [15]. To explore other DL-based CSI sensing applica-

tions, we refer the readers to [7], [45]. A few of the interesting

works on human activity classification are briefly discussed

below. Shalaby et al. [35] proposed four different DL models,

namely CNN with Gated Recurrent Unit (GRU), glscnn with

GRU and attention, CNN with a GRU and a second CNN, and

CNN with Long Short-Term Memory (LSTM) and a second

CNN, achieved accuracy up to 99.46%. However, these models

only consider a single subject performing six activities and can

not generalize to new untrained environments. MCBCAR by

Wang et al. [46] used generative adversarial network (GAN)

and semi-supervised learning to address the challenge of the

non-uniformly distributed data due to environmental dynamics.

Even though this work considers the dynamic change in the

environment, the framework is not designed to adapt to new

untrained environments and simultaneous multi-subject sens-

ing. AFSL-HAR framework by Wang et al. [47] achieves a

performance gain in recognizing the new activities with a few

samples of new data through few-shot learning.

Even though this work addressed the challenges of new

scenario, activity or subject by fast adaptation with few new

samples, the framework classify only one subject at a time

in any environment. Ding et al. proposed WiLISensing [48]

to address the challenge of variations in activity locations in

the same environment with few new data samples through

Protonet. However, it is not evident how WiLISensing would

adapt to a completely new scenario or new subject. Ding et al.

proposed RF-Net [49], a meta-learning framework to adapt to

new environments with few labeled data samples. However, the

RF-Net’s CSI-based sensing performance ranges in (70-80)%.

In contrast to the DL-based systems, Abdelnasser et al. [8]

designed WiGest for gesture classification based on mutually-

independent distinguishable application actions which does not

need any training. To the best of our knowledge, we are the
first to propose a framework for simultaneous multi-subject
activity recognition with Wi-Fi sensing.

VI. CONCLUDING REMARKS

In this paper, we have proposed SiMWiSense, the first

framework for simultaneous multi-subject sensing based on

Wi-Fi CSI sensing. In contrast to the existing approaches,

SiMWiSense can classify the activities of multiple subjects

in the same environment independently and simultaneously. An

FSL-based algorithm: FREL is also proposed for fast adaptation

to changing data distributions, making the system robust for the

dynamic environment, which can generalize new environments,

subjects with only a few new samples of data achieving an

accuracy up to 98.94%. We have evaluated the efficacy of the

overall design using extensive data collected in three different

scenarios: classroom, office and kitchen, with three subjects

performing 20 activities simultaneously. We demonstrate that

SiMWiSense surpasses the traditional CNN-based approach

and a state-of-the-art FSL model by 85% and 20% on average.
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