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e.g. object detection and image classification. SOAR pipeline uses
distributional deep reinforcement learning (DDRL) agents with a
multi-branched context-aware neural network. Two neural gates
analyze onboard features to identify the context and contextual
features, enabling a DDRL agent to optimize resource usage and
task-specific packet-loss objectives. We evaluated SOAR in real-
world vehicular system under line-of-sight (LoS) and non-line-
of-sight (NLoS) propagation scenarios, SOAR reduces resource
utilization by 35-40% compared to fixed antenna configuration
benchmarks [1].

Index Terms—Mobile Edge Computing Systems, Task Offload-
ing, Deep Reinforcement Learning

I. INTRODUCTION

Robotic applications heavily rely on machine learning mod-
els for their operations, typically in the form of complex deep
neural networks (DNN). For example, autonomous navigation
incorporate computer vision tasks such as image segmentation,
object detection, and classification, which are computationally
intensive and delay sensitive [2]. Due to the limited computing
capabilities that are usually available to a mobile edge device
(MED), in mobile edge computing systems (MECS), the tasks
are offloaded to a remote device, the edge server (ES) [3],
[4]. Although task offloading can decrease MEDs’ energy con-
sumption, as well as the execution time, the offloading process
requires the transmission of the input data to the ES and the
response of the inference to be sent back to the MED. The
large size of the computer vision input data and their timely
and reliable transfer over wireless channels pose considerable
challenges to communication and network systems.

The above issue is further exacerbated in applications where
MEDs operate in challenging propagation environments, such
as ground rovers that autonomously process visual information
to navigate in urban and indoor settings. In such scenarios,
unreliable communications degrade core performance metrics,
and make data rate erratic [5], consequently gravely affecting
task performance. We note how these applications impose fine-
grain performance constraints connected to individual data
points (e.g., a bound on per-image latency or quality) rather
than requirements on average performance metrics such as

(a) 1x1 streams (b) 4x4 streams

Fig. 1: Packet loss using 40MHz and 80MHz within two types
of outdoor scenarios: with and without obstacles.

throughput. The current literature adopts two main approaches
in MECS to address this challenge. Both are based on limiting
the amount of data to be transmitted from MED to the ES.
Approach one: Partial offloading [6], [7] is one of the ap-
proaches to maintain the required quality of service (QoS)
in challenging channel conditions. Partial offloading involves
dividing the data processing and task execution between ESs
and the MEDs. In poor channel conditions, the MEDs choose
to partially rather than fully offload the data to the ES.
Approach two: Some solutions propose to compress input data
and or intermediate features [8]—[10], for instance in the context
of “split” convolutional neural network (CNN) architectures.
This results in a smaller amount of data transmitted over the
wireless channel, and thus a reduced sensitivity to poor or
highly erratic channel conditions.

The above approaches focus on the modification of the
computing pipeline, leaving the transmission layer unaltered.
Conversely, many communication centered approaches focus
on traditional traffic and network-based perspectives ignoring
the important challenges and opportunities connected to the
semantic structure of the data and computing tasks.

Focusing on modern multi-user multiple-input multiple-
output (MU-MIMO) communication technologies, our ratio-
nale takes as a starting point fine-grain characteristics of task-
level performance. We first illustrate the characteristics of the
problem at hand with some preliminary tests on a real-world
system (see the detailed description in Section IV). Fig. 1 shows
patterns of per-image packet loss for different transmission
configurations (number of parallel data streams and channel
bandwidth) both in line of sight (LoS) and non-line of sight
(NLoS) settings. The erratic nature of these fine-grain patterns
is apparent, as well as their dependency on the specific environ-
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Fig. 2: SOAR vs traditional task offloading approaches. Here,
N_.: no. of the transmit antenna, N,.: no. of the receive stream,
BW: bandwidth, PDR: packet delivery ratio, and S: data rate of
the wireless channel.

ment and transmission configuration. On the one hand, larger
resource usage — a larger number of streams and bandwidth
— can reduce both average and variance of per-image (as
illustrated in Fig. 2).

In the context of perception for robotic platforms, our overar-
ching goal is to create a context and task-aware predictive logic
capable to dynamically and semantically control MU-MIMO
resource usage to achieve task specific objectives. The proposed
framework — SOAR- reasons at the granularity of individual
data points to be delivered to the ES. Specifically, SOAR selects
transmission configurations predicted to achieve a per-image
packet loss, corresponding to a task specific performance, in
a window of future images while minimizing resource usage
based on observable features drawn from system components
such as telemetry, network interface and application.

The engine of SOAR is an innovative context-aware dis-
tributional deep reinforcement learning (DDRL) agent [11]
that embeds a multi-branched neural network. First, a neural
selector processes general features to detect the context and
select a context-specific model (branch) in a pre-trained set.
The branch processes a specialized set of features to output the
distribution of a value function based on a composite perfor-
mance/resource usage cost function. We remark how traditional
DRL agents focus on the estimation of the expectation of a
value function conditioned on an action, without consideration
for its variance. In the context of mission-critical systems, this
may lead to catastrophic outcomes. Conversely, DDRL focuses
on the distribution of the value function given the action, thus
allowing more sophisticated reasoning — together with more
robust learning.

Summary of Novel Contributions

e In the context of robotic applications offloading computer
vision tasks over MU-MIMO Wi-Fi (IEEE 802.11ac) channels,
we perform an in-depth analysis of the relationship between
system-level features of MECS from logical blocks such as
application, network, and telemetry, the characteristics of image
transfer at the fine-grain temporal scale, and task performance.

e We develop a novel semantic, predictive and context-aware
controller — SOAR- that dynamically configures MU-MIMO
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transmission parameters to meet packet loss ratio objectives set
at the granularity of individual image/task while minimizing
channel resource usage. The controller is task aware, meaning
that the packet loss threshold is set to the specific computer
vision task. To make an example, as demonstrated in our re-
sults, a satisfactory performance in image classification can be
achieved with a larger loss of information compared to semantic
segmentation, where individual pixels are classified. The SOAR
framework is context-specific as the controller and its input
features are dynamically adapted to the operating context —e.g.,
a rover navigating in a line-of-sight (rural open space) or non
line-of-sight (urban with buildings) environments — to boost
control effectiveness.

e At the core of the SOAR framework is an innovative
multi-branch distributional deep reinforcement learning agent.
This design uses context-specific agents trained on specialized
features to maximize performance in their environments. A
lightweight neural selector extracts context from a small feature
set to select the appropriate agent. This approach significantly
improves per-image packet loss prediction compared to non-
specific predictors. By evaluating reward distributions rather
than expectations, these agents enhance controller robustness,
offering a novel approach for communication systems.

e We perform an extensive data collection campaign to
inform both the construction and the evaluation of SOAR with
a Linux workstation as ES and a rover as MED in 2 different
environments with 4 different communication setups represent-
ing simultaneous user streams. We consider data offloading at
different frames per second (FPS) — 1, 5, 15, and 30 FPS for
each of the setups. Additionally, we develop a framework to
synchronously capture the features from network, application
and MED telemetry blocks.

e We present results demonstrating SOAR’s context adap-
tation to real-world dynamics based on application, network,
and telemetry features. SOAR’s distributional deep reinforce-
ment learning (DDRL) context agent achieves state-of-the-art
performance for instance segmentation and image classification
tasks, reducing resource utilization by 35% in NLoS and 40%
in LoS, within a 20ms offloading deadline. We evaluate short-
sighted (myopic) and long-term DDRL policies, finding that
myopic limitations more significantly affect performance in
NLoS compared to LoS propagation contexts.

II. RELATED WORK AND MOTIVATION

Task offloading in MEC systems is hindered by volatile
wireless channels and time-varying workloads. To address this,
prior work has explored resource allocation frameworks, dis-
tributed computing, and dynamic reconfiguration of computing
pipelines between MEDs and ESs [12]-[14].

Most recent literature in MECS focuses on optimizing key
metrics such as energy consumption, bandwidth usage, and
computational resources, primarily under reliable channel con-
ditions. For instance, Guo et al. [15] and Fresa et al. [16]
propose frameworks to maximize task accuracy in full offload-
ing scenarios. Meanwhile, Matsubara et al. [17], Lakew et al.
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Fig. 3: Example of a 4x3 MU-MIMO system.

[18], and others explore partial offloading to balance end-to-
end delay, energy consumption, and task performance through
split computing, early exit, and data compression techniques.

Dynamic pipeline configuration is studied by Callegaro et
al. [19], who leverage telemetry, network, and application data
to predict edge servers (ESs) that maximize task execution
success. Their model-free Markov Decision Process estimates
the optimal ES for reliable offloading.

The effects of wireless channel conditions on MECS are
analyzed by Ilhan et al. [20] and Ozer et al. [21]. Ilhan et al.
examine LTE channel noise impacts on image segmentation,
while Ozer et al. propose denoising to enhance transmitted
image quality for edge-based computer vision task.

We then note how most task-aware algorithms mostly focus
on the computing workload, while communication-oriented
contributions are primarily centered on traditional traffic-based
reasoning. In stark contrast, our contribution uniquely connects
the semantic of the tasks and their fine-grain performance to the
dynamic adaptation of communication parameters.

1. MU-MIMO IN MECS

A. A Walkthrough of MU-MIMO Wi-Fi Systems

Wi-Fi technology provides reliable task offloading [22].
The MED’s integrated Access Point (AP) enables simulta-
neous communication with multiple stations stations (STAs)
connected to ESs, efficiently leveraging beamforming for
parallel transmission streams . Using orthogonal frequency-
division multiplexing (OFDM), Wi-Fi transmits across K par-
tially overlapping sub-channels. Input bits are organized into
OFDM samples, which are grouped into OFDM symbols a =

[a_k/2,s oy agiy2)1] [23], [24], allowing simultaneous trans-
mission of digitally modulated symbols across K sub-channels.
(K/2)—1
Stz (t) = ei2mfet Z apel 2 kt/T €))
—K/2

Equation (1) expresses the transmitted signal whereas f. is the
carrier frequency and 7' = 1/(Af) is the symbol time with A f
being the sub-channel spacing. To improve the signal quality,
the transmitter performs beamforming to steer the transmission
streams toward the intended receiver. To perform beamforming,
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multiple signal streams are combined at the transmitter by steer-
ing the weights W. W is derived from the channel frequency
response (CFR) matrix H, which is estimated for every orthog-
onal frequency-division multiplexing (OFDM) sub-channels.
The obtained H is of dimension K x M x N, where M and
N are the number of transmit and receive antennas. At the
receiver (beamformee), the beamformed signals are retrieved
from the fact that [HJ;; x [W],, =0 where [ # [ or i # i.
Fig. 3 presents a 4 x 3 MU-MIMO system where Access
Point (AP) (beamformer) with 4 antennas transmitting to two
different STAs: STA A and STA B, having two and one receive
antennas enabled respectively. The transmission signal sy, (t)
from the beamformer bounces off different physical objects
of the environment, and P different copies of the signal are
received by the beamformees (STA A and STA B). If the signal
is transmitted from m € {0,1,..M — 1} antennas and
received by n € {0,1,...N — 1} antennas the CFR matrix H
is represented equation 2 where A and 7, are the attenuation
and delay experienced by path P.

Hi(n) = Ap(n)e??F™

P—1
= Z Ap(n)e= 32 etk/T)mp(n) @
P=0

The beamformer (AP) derives W from the H matrix to steer
the transmission streams to enhance the power towards single
or multiple beamformees (STA) simultaneously. This enhances
signal strength, improving data rate and reducing transmission
delay. MU-MIMO task offloading mitigates the impact of indi-
vidual stream capacity limitations, preserving overall network
performance.
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B. MU-MIMO Limitations in MECS

Link quality, including data rate, packet loss, and latency are
influenced by factors such as the number of transmission and
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instance segmentation at different percentages of packet losses.

reception streams, available bandwidth, and the number of con-
nected STAs. Increasing bandwidth and stream count improves
data rates and reduces latency (see Fig. 4). However, average
performance metrics do not reflect temporal channel degrada-
tions, which are crucial for mission-oriented task offloading
scenarios requiring per-transmission reliability guarantees.

Additionally, while allocating more streams and bandwidth
enhances performance, it increases power consumption [25].
This accelerated energy depletion limits multi-user support,
particularly in energy-constrained devices.

Therefore, it is essential to configure MU-MIMO systems
to ensure task-level reliability while efficiently managing both
wireless resources and energy within a MECS. This need mo-
tivates the development of a control framework for task-aware,
resource-efficient transmission management, as discussed in the
following sections.

C. Computer Vision Task Performance with Packet Loss

We demonstrate the relationship between task semantics,
performance, and packet loss for two common machine learn-
ing (ML)-based computer vision tasks: (i) object detection and
classification, and (ii) instance segmentation. Results show that
per-image loss tolerance depends on both the task type and the
specific model employed.

1) Object detection and classification with packet loss: In
object detection and classification, a neural model assigns a la-
bel to an image based on features like edges and corners. During
training, these features influence class prediction performance.
Accuracy, defined as the ratio of correct predictions (true pos-
itives and negatives), indicates performance, with scores near
1 reflecting better results on balanced datasets. Fig. 5 shows
object detection and classification accuracy obtained using the
VGG16 [26] and ResNet9 [27] models trained and tested on
the CIFAR 100 dataset [28] as a function of the packet loss
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affecting the input image. The performance of both models
decays drastically when the percentage of packet loss in an
image is above 30%. The VGG16 architecture is composed
of a uniform arrangement of convolution layers, this differs
from the ResNet9 architecture [27], which is reflected in the
performance variation, for instance, an image with 10% of
packet loss downgrades the accuracy by half compared to the
performance with no loss.

2) Instance segmentation with packet loss: In instance seg-
mentation, a model identifies objects and classifies their pix-
els. The intersection over union (IoU) quantifies the overlap
between predicted and ground truth bounding boxes, with an
IoU of 0.5 indicating at least 50% overlap in bounding boxes
and pixel-level segmentation.mAP at 0.5 IoU (mAP@0.5) com-
putes the average precision (AP) for each class of the object and
then takes the mean across all classes. AP accounts for both
precision (how many of the predicted objects are correct) and
recall (how many of the actual objects were detected). A higher
mAP@0.5 score indicates more accurate localization and pixel-
level classification.

Fig. 6 depict the mAP@0.5 performance and precision-recall
(PR) curve respectively of instance segmentation with COCO
[29] validation dataset for different percentages of packet loss
in every image with two state of the art (SOTA) models:
YOLOVS and YOLOVS [30]. mAP@0.5 performance is 0.67%
when there is no packet loss in the images which degrades to
0.219% and 0.008% when the packet losses are 50% and 100%
respectively with YOLOVS.

IV. SOAR TASK OFFLOADING SYSTEM

A. Problem Formulation

We consider a MECS comprising a MED and multiple ESs
connected via an IEEE 802.11ac MU-MIMO network, where
the AP and STAs represent the MED and ESs, respectively. The
system emulates real-time task offloading, offloading image
frames from benchmark datasets from the MED (AP) to the
ESs (STAs) at a predefined frame rate. The goal is to optimize
wireless resource usage while meeting deadlines and task per-
formance constraints. We denote the system control parameters
as Xy, p, r;» a vector composed of three key variables: the
bandwidth b; € B {z1,...,2,} MHz, the number of
parallel streams in the antenna configuration p; € A = {1 X
1,...,n x n}, and the packetization strategy used per device
ri €Y = {y1,...,yn}. We define two packetization strategies,
they are duplication and parallelization; in duplication, a packet
is duplicated as much as the number of streams in the con-
figuration such that a 4x4 antenna configuration has 4 copies
of a packet whereas parallelization implies that each stream
transmits a unique packet. We define the task performance
requirements (D;) and map them to a target packet loss ratio
per image as D; € F={Fiype,, ..., Fiype, ;- Each task has a
latency constraint corresponding to a deadline 7°, which is the
maximum time given to the system to complete the task and
maps to a maximum time to deliver the information to the ES.
We, then, denote the objective function as the expectation of the

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:54:59 UTC from |IEEE Xplore. Restrictions apply.



Neural Context
Gate

Context

Network
Telemetry
Application

Features

Features

B

OR-DONI A can

Context 3
QR-DOQN Agent

Multi-Branched
Controller

d/.: loss threshold Output

Branch 1

Parameters Selection
BW: 80 MHz
MU-MIMO: 4x4
Dup. Strategy: duplication

Branch 2

Branch 3

Fea.tu res Neural Features 802.11ac
Monitoring Features Gate @000 7 - Configuration
Module Module

Fig. 7: Dataflow of the SOAR system: We process a set of features from a diversity of context traces to optimize the wireless

configuration based on the ML task requirements.

cost of the control variables using the following resources con-
sumption model adapted to MU-MIMO network configuration:

Kb pere = o+ f1(be) + fa(pe) + f3(re) 3

In the above equation, each f; represents the raw resource usage
i.e. bandwidth, number of transmission streams and packetiza-
tion strategy to express the relevance of each component as well
as the relationship between the usage of each component and
the cost. We define the performance constraint as the probabil-
ity of having the minimum number of packets d; successfully
received within the target time 7T". The probability M}, defined
as

“)

is set based on application reliability demands. We define our
optimization problem as follows:

min E[Xo, p,r.];

M; = P(d; > Djlx),

)
s.t. D; Vj € {type,, ..
k<T, k>0

fo, fis fa, f3 >0

B. System Overview

., type,, }

To solve the problem defined in the previous section, we pro-
pose the context-aware control framework SOAR. The frame-
work embeds a multi-branched neural model that selects the
distributional DRL agent based on the perceived context ex-
tracted from readily observable features. Specifically, the com-
ponents of the framework are (see Fig. 7): (i) features monitor-
ing module, (ii) neural gates: context and features, (iii) multi-
branched controller and (iv) 802.11ac configuration module.

The Features Monitoring Module collects the MED system
state, including sensor readings, and telemetry, wireless com-
munication and application-specific features. The inputs for
this model encompass telemetry data, such as accelerometer,
gyroscope measurements, network parameters, including trans-
mitter and receiver signal strengths, data rate, and application-
specific parameters such as frames per second and task type.

The neural gates process data from the Features Monitoring
Module to identify context and key features. The lightweight
Context Gate, a trained classifier, uses a Flatten layer to pre-
process input data into a 1D vector, followed by three dense
layers with Rectified Linear Unit (ReLU) activations, L2 reg-
ularization, and a 20% dropout layer to prevent overfitting. Its
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logits, mapped to three context classes (e.g., LoS and NLoS),
optimize for binary cross-entropy loss. The Neural Features
Gate, a random forest model, selects context-specific features
to predict packet losses, tailoring feature selection based on the
context identified by the context gate.

The Multi-Branched Controller module uses the contextual
features from the neural feature gate to determine the quantile
regression DQN (QR-DQN) agent required to optimize the
wireless configuration. Each agent promotes policies that ben-
efit the different contexts and task performances. The 802.11ac
Configuration Module modifies the bandwidth, number of
streams to use for transmission, and the packet duplication
strategy.

C. Distributional Deep Reinforcement Learning

We implement our controller as a Distributional Deep Rein-
forcement Learning (DRL) agent, with a reward function that
encodes both the objective and constraints of our optimization
problem. As with standard RL approaches, our formulation is
based on a Markov Decision Process (MDP), defined by the
tuple (S, A, R, P,~), where S and A are the state and action
spaces, R is the reward function, P(s;y1|st,a:) defines the
transition probability, and v € (0, 1] is the discount factor for
future rewards. A policy 7(-|s) maps each state s € S to a
distribution over actions. While standard RL optimizes the ex-
pected return G™ = 5.2 0 ~* Ry, this approach often overlooks
low-probability states and ignores the variability of long-term
rewards. Moreover, learning expected returns directly typically
requires a large number of samples.

We propose to adopt a distributional reasoning, and specif-
ically use distributional RL algorithms, which explicitly con-
sider the uncertainty in the long-term outcome of actions. This
class of algorithms has been shown to improve the performance
of the controller in many ways, from enabling faster learning
to improving generalization. While DDRL has seen a limited
investigation in robotics, its use in the optimization of wireless
networks is almost completely unexplored. We take as starting
point the distributional DRL model-free algorithm called QR-
DQON [11]. The QR-DQN algorithm is based on the DQN
(Deep Q Network) [31], a standard DDRL algorithm where the
expected return is the g-value of a state-action combination for
an environment £ and it is calculated as follows:

Q*(s,a)= E

St417

(6)

[Re + ymaxQ™ (s¢41, ar41)]s, al.
a+1
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In QR-DQN, the g-value is expanded to a distribution of quan-
tiles per action. The algorithm defines a quantile distribution Z
that maps each state-action pair (s, a) to a uniform probability
distribution supported on 6;(s, a) as follows:

N
1
Zy(s,0) = ; 90, (5, ), ™
where ¢, denotes a Dirac at z € R. Then, following this
formulation [11],demonstrates that for a quantile 7 € [0, 1] the
minimizer for F1(7) is given by the quantile regression loss:

L7(0) = E [p-(Z-0)], @®)
ZnZ
pr(u) = u(T — dy<o)Vu € R, )
where J,, denotes a Dirac in u. To solve our optimization
problem, we define our action space A = B Xx AXY as

the number of possible wireless configurations for bandwidth,
number of streams, and packetization strategy. Our state space
S is defined by the context which represents a subset of the
telemetry, network, and application features. The reward func-
tion is denoted as follows:

_ AN Kbper)) + (1= Ndj + 5 ifdj > D;
A (Xby po,re)) + (1 = N)d; otherwise.
(10)
Where A values are within the (0, 1] range that represent the
policy priorities and z is the task latency.

Different from any existing DDRL algorithm, we train a set
of context-specific agents, and use the neural context gate to
select the agent, thus building the first multi-branched exemplar
of DDRL. Notably, each agent will use a context-specific set of
features as input to maximize its performance while minimizing
its complexity.

V. DATASET AND SETUP

We build a dataset focused on monitoring the state of the
system composed by MED and the ES within two different
contexts for robotics applications. The dataset aims to provide
insights into the correlation between the controllable param-
eters of the wireless channel such as the number of users.
The maximum number of streams, the bandwidth used, the
packetization strategy, and the inherent characteristics of the
environment and application.
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Fig. 8: NLoS and LoS contexts for SOAR framework.
We collected features from two different scenarios: LoS and

NLoS. For the LoS scenario, we have deployed our equipment
in an isolated park area with no interference coming from
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infrastructure or other mobile devices. Alternatively, for the
NLoS scenario, we use an urban environment with buildings
and wireless infrastructure hindering packet transmission.

In both scenarios, the MED follows a circular trajectory (with
a ~12m radius, see Fig. 8). Each experiment is characterized
by completing twice the same trajectory with specific config-
uration parameters, for instance, a fixed number of streams,
bandwidth, transmitted frames per second used to transmit data
and the number of ES that the MED transmits its images.
We leverage the MU-MIMO capabilities of the wireless channel
by equating the number of users to the number of simultane-
ous data streams it can support. Consequently, the maximum
number of simultaneous users is constrained by the hardware’s
limitations. To evaluate performance under these conditions,
we conducted experiments with multiple transmissions, ranging
from 1 to 4 streams.
We augmented our dataset by applying multiple image dead-
lines, reflecting different packet loss patterns. Also, we dropped
packets received after application deadline, and recorded the
number of received images based on the packetization strategy.
The hardware used for MED includes a custom-designed rover
equipped with a Jetson Nano microcomputer deployed to over-
see the execution of critical tasks, including telemetry manage-
ment, network operations, and packet logging. The hardware
used for the ES is a laptop with a GPU that could process the
transmitted image at their end.
In the pursuit of performing 802.11ac data transmission, par-
ticularly for utilizing MU-MIMO technology, we established
a local-area network (LAN) infrastructure by interconnecting
multiple routers. Each MED and ES has its router to transmit
images. We modify the wireless configuration by changing the
channel bandwidth and number of transmission streams. Our
network configuration is comprised of a mobile AP which is
our MED attached to the rover, alongside two stationary STAs
which are our ESs that transmit a rate of images per second
using a non-reliable network protocol (UDP).

VI. TRAINING AND EVALUATION

We implement custom machine learning models in multiple
components of the SOAR framework, particularly in the neural
features gate and neural context gate modules. In the following,
we describe the implementation details, the evaluation of our
approach, and an analysis of the DDRL approached used.

To build the neural features gate, we train a random forest
classifier to select the useful features as mentioned in section
IV-B. Our tests show that the optimal set of features is heavily
dependent on the context; for instance, in the LoS context: fps,
Xaceels Yaccel, distance, and signal strength are the relevant
features while in the NLoS context: Xgy 0, Ygyro» Xaccels
Yaccels distance and Rx bitrate perform better toward packet
loss prediction. In the neural context gate, we train a classifica-
tion model based on the architecture of the features gate, adding
two dense layers and using a Softmax activation for simplicity.
We use 10% of our data and a 5 cross-validation split to avoid
overfitting, after training we achieve 91.43% of accuracy which
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Fig. 9: Delay constraints are represented by shapes and optimization algorithms are distinguished by color. (Left) Image
classification performance using ResNet9 [27] model within LoS and NLoS contexts, and (Right) Instance segmentation using

YOLOVS [30] model

infers that context prediction with the selected features is highly
reliable.

We propose a distributional DRL-based algorithm to dy-
namically select optimal wireless configurations for a MED
trajectory, taking into account the erratic behavior of channels
in real world environments. Our custom environment supports
context-specific features and hardware-compatible actions. We
deploy a QR-DQN agent per context. The state space is derived
from our dataset, and agent performance is evaluated on two
robotics-related computer vision tasks: instance segmentation
and image classification. As discussed in Section III, task per-
formance varies with the portion of the image received, while
wireless configurations and application deadlines significantly
impact packet loss. As part of the evaluation of the disributional
DRL agents, we train agents for two types of strategies: myopic
and long-term. These policies are differentiated by the values
assigned to the discount factor . The myopic policy corre-
sponds to v = 0.05, indicating a short-sighted approach where
immediate rewards are prioritized over future gains. Contrarily,
a higher v value of 0.95 emphasizes future rewards.

Due to the lack of literature that optimizes the wireless
channel with MU-MIMO using real-time systems we compare
our solution to a baseline algorithim —a hierarchical tree search
where the antenna configuration is fixed, e.g. 2 x 2 within the
trajectory followed by the MED.

The baseline algorithm finds the minimum amount of re-
sources (determined by the bandwidth and packetization strat-
egy) that the MED can use to get the minimal number of packet
loss per second. Our experiments consider all possible MU-
MIMO antenna configurations as well as 3 different real-time
systems deadline requirements: 10, 15 and 20 ms. The resource
usage calculation is based on the components of the possible
wireless configuration which are the bandwidth, number of
streams, and packetization strategy. Each component spends
a percentage of the total MED resources, in this way, the
maximum resources expenditure in a wireless configuration
corresponds to the 4 x 4 antenna arrange, 80 MHz bandwidth,
and duplication as packetization strategy. From these variables
the prioritization goes as the hierarchical search, being the an-
tenna configuration the parameter that is more influential in the
resource utilization, followed by bandwidth and packetization.
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The classification task results shown in Fig. 9, we notice that
within a 20 ms deadline, 3 x 3 and 4 x 4 fixed wireless configu-
rations achieve the highest accuracy offered by ResNet9 [27]
model in both contexts with their respective costs in the re-
sources usage when the hierarchical search is implemented.
The myopic policies compared among contexts demonstrated
a better performance in the LoS context — our intuition is that
this is due to the lower complexity environment compared to
the NLoS. Additionally, we observe that given a comparable
performance, the LoS agent reaches its best performance using
35% less resources than the fixed wireless configuration, and
the NLoS agent reaches its best performance using 40% less
resources than the fixed configuration.

The segmentation task results for LoS and NLoS are
shown in Fig 9 , we notice that the highest accuracy of the
YOLOVS8 [30] model is reached — similarly to the classification
task — within the 20 ms deadline and using a 3 and 4 streams
fixed configuration. Contrary to the classification task, the my-
opic policy achieves a better mAP as the performance degrades
gradually with the packet loss compared to the classification
task. We also observe that the mAP remains above 0.5 for the
15ms deadline. Resources usage is reduced in both contexts,
moreover for a certain number of resources SOAR can use
smaller deadlines (thus decreasing the overall latency) without
perceivably degrading the performance of the tasks.

Our algorithm optimizes reward distributions by efficiently
identifying edge cases, improving resource allocation as re-
flected in the action distribution. Through 500-episode exper-
iments, illustrated in Figure 10, we compare action distribu-
tions across line-of-sight (LoS) and non-line-of-sight (NLoS)
contexts. The myopic policy generates a broader action range,
with packet duplication more frequent in NLoS scenarios,
indicating higher resource consumption due to increased com-
plexity. Bandwidth preferences also differ: 80 MHz is primarily
selected in NLoS contexts, while 40 MHz is favored in LoS

situations.
VII. CONCLUSIONS

In this paper, we addressed the challenge of reliable task
offloading within the context of robotic applications, where
MED mobility, wireless communication, and real-time ML task
requirements are critical. To tackle this, we proposed the SOAR
framework, a context-aware wireless semantic configuration
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Fig. 10: Action distribution for 20ms for different v parameters in NLos(Left) and LoS(Right) context. Dup and NoDup stand for

each packetization strategy implemented.

solution for resource optimization in MECS. To assess the
performance of SOAR, we assembled a comprehensive dataset
comprising transmitted images through a MU-MIMO channel
within a context (NLoS and LoS) trajectory. Our analysis
involved the implementation and development of multiple data
gates and modules to extract features with predictive capabil-
ities, and to identify the context to which a subset of features
are more relevant than others. Results demonstrated that SOAR
can identify contexts using real-world data through feature
selection and a neural context gate implemented within its
design. SOAR’s DDRL context agent maximizes the reward
distribution in a horizon which is reflected in the adaptability
of its policy to the tasks performance while reducing the re-
sources utilization over the MED trajectory. Specifically, SOAR
achieves a task performance using 35-40% of resources when
compared to a fixed wireless configuration optimization for an
offloading deadline of 20ms within both contexts.
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