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Abstract—Emerging mobile virtual reality (VR) systems are
required to continuously perform complex computer vision tasks
needing computational power that is excessive for mobile devices.
Thus, techniques based on wireless edge computing (WEC) have
been recently proposed. However, existing WEC methods require
the transmission and processing of a high amount of video data
which may ultimately saturate the wireless link. In this paper,
we propose a novel sensing-assisted edge computing (ISAC-EC)
approach to address this issue. ISAC-EC leverages knowledge
about the physical environment to reduce the end-to-end latency
and overall computational burden by transmitting to the edge
server only the relevant data for the delivery of the service. Our
intuition is that the transmission of the portion of the video
frames where there are no changes with respect to the previous
frames can be avoided. Through wireless sensing, only the part
of the frames where any environmental change is detected is
transmitted and processed. We evaluated ISAC-EC by using a 10K
360�camera with a Wi-Fi 6 sensing system operating at 160 MHz
and performing localization and tracking. Experimental results
show that ISAC-EC reduces both the channel occupation and end-
to-end latency by more than 90% while improving the instance
segmentation and object detection performance with respect to
state-of-the-art WEC approaches. For reproducibility purposes,
we pledge to share our dataset and code repository.

I. INTRODUCTION

Emerging technologies based on mobile virtual reality (VR),
such as the Metaverse, will provide new entertainment appli-
cations, and ultra-realistic online learning experiences among
others. One of the key issues currently stymieing the Meta-
verse is that commercial VR headsets do not deliver adequate
performance to the end user. Experts believe that 360° video
frames should have at least 120 Hz frame rate with 8K reso-
lution to avoid pixelation and motion sickness [1]. However,
current wireless VR headsets on the market provide up to
4K resolution, with only a limited few achieving a frame rate
within the range of 100-120 Hz [1]. Moreover, Existing mobile
VR headsets do not have enough computational resources to
execute the required complex deep neural network (DNN) tasks
like object detection and segmentation on 8K frames. Thus,
they either excessively decrease battery lifetime or degrade
the performance to unacceptable levels. While mobile DNNs
such as MobileNet and MnasNet can decrease the computation
requirements, they lose in accuracy – up to 6.4% – compared to
large DNNs such as ResNet-152. While wireless edge comput-
ing (WEC) can address the issue, continuously offloading DNN
tasks requires data rates that far exceed what existing wireless
technologies can offer today. Indeed, sending frames at 120 Hz
with 8K resolution would require about 40 Gbps of data rate for
each AR/VR device, while today, Wi-Fi supports a maximum of
1.2 Gbps network-wide [2].
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Fig. 1: ISAC-EC vs traditional edge computing approaches.

Another key issue is that existing DNNs are not trained on 8K
images due to the unavailability of the dataset and limited com-
puting resources. While compressing and/or downsizing the
frames would reduce the data rate requirement, they would re-
duce the system performance by 79% and 62% respectively [2].
While partitioning the 8K frames into multiple smaller tiles can
be another option, the region of interest might fall into multiple
tiles causing performance degradation.

To address the above core issues, we propose Integrated
Sensing Assisted Efficient Edge Computing (ISAC-EC). As
depicted in Figure 1, ISAC-EC offloads to the edge server
only the relevant portions of the frames – thus decreasing
data rate requirements with respect to traditional edge com-
puting approaches, without losing any image resolution. In
stark opposition with existing art that compresses or partitions
frames [3], ISAC-EC leverages wireless sensing to localize
and track environmental changes such as the movements of
humans or other objects. This way, instead of offloading the
whole frame, ISAC-EC only offloads the part of the frame
where motion is detected, hereafter referred to as region of
interest (ROI). Since wireless sensing-based localization can
operate concurrently with wireless communications, ISAC-EC
does not require any dedicated infrastructure as it leverages
the channel estimation procedure which is routinely required
by any wireless communication standard such as Wi-Fi (IEEE
802.11). Even though it would be possible to take similar
approaches with event-based cameras or software-only-vision
[4], the approach in ISAC-EC is much simpler which also does
not need any dedicated additional device.

Summary of Novel Contributions
• We present ISAC-EC, a novel paradigm that performs wire-
less edge computing by leveraging wireless sensing integrated
with the communication process (Section III). ISAC-EC opti-
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mizes the edge offloading process by localizing and tracking
environmental changes that eventually determine the ROI to
offload to the edge server instead of the whole frame. This
way, ISAC-EC optimizes the transmission latency and channel
utilization while improving the DNN performance;

• We implemented and validated the ISAC-EC through several
experiments carried out in a hall room (Section V). In Section
VI, we compare ISAC-EC with state-of-the-art work YolactA-
COS [5] and EdgeDuet [3].

II. BACKGROUND AND RELATED WORK

Wireless edge computing (WEC) has gained significant trac-
tion over the last few years. Prior work has focused on reducing
the end-to-end latency as well as the channel occupation by
employing DNN partitioning frame partitioning and full task
offloading [6]. While frame downsizing and frame compression
approaches [6] can effectively decrease energy consumption
and channel usage, they can hardly be applied in VR appli-
cations with 8K resolution and higher. Some existing work
that is complementary to ours has used wireless sensing for
vision-oriented approaches in multi-modal, cross-modal, and
transfer learning settings [7]. For example, Xie et al. [8] rather
than leveraging angle of arrival (AoA), utilizes a single off-
the-shelf time of arrival (ToA) based depth camera to generate
high-resolution maps in a noisy and dark environment.However,
to the best of our knowledge, none of the earlier work has
proposed integrated wireless sensing to assist efficient edge
offloading.

III. SYSTEM OVERVIEW

ISAC-EC empowers modern mobile devices featuring 360°
cameras with wireless sensing functionalities that identify the
ROI inside each captured video frame before transmitting it to
the edge. ISAC-EC consists of three main blocks, as summa-
rized in Figure 2: (1) sensing-assisted ROI detection, (2) ROI
offloading, and (3) task execution at the edge server.

(1) Sensing-assisted ROI Detection: The ROI detection is
based on the context information obtained through wireless
sensing. Specifically, we leverage the channel frequency re-
sponse (CFR) estimated by the wireless network interface card
(NIC) to detect the dynamics in the environment. ISAC-EC
synchronizes channel measurements with the video frames
through their timestamps, and obtains an estimate of the lo-
cations of the targets in the environment by processing the
CFR through multi-path parameter estimation algorithms. A
tracking algorithm allows detecting the ROI, being the area
where changes were detected.

(2) ROI Offloading: The ROI offloading block is in charge
of selecting the portion of the high-resolution frame to be
offloaded to the edge server based on the context information
gained through wireless sensing.

(3) Task Execution at Edge Server: The edge server re-
ceives the ROIs from the camera and uses them as input for the
DNN task, thus reducing both the training and inference time
with respect to using the whole (bigger) frames.
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Fig. 2: Overview of the ISAC-EC Framework.

IV. SENSING-AIDED ROI DETECTION

The CFR-based localization has been implemented by adapt-
ing the super-resolution multi-path parameter estimation algo-
rithm MD-Track [9]. Hence, for tracking, we implemented a
custom-tailored approach based on density-based spatial clus-
tering of applications with noise (DBSCAN).

A. AoA and ToA Estimation
We consider a 1⇥N system where N is the number of

receiving antennas and n 2 {0, . . . , N � 1} indicates the re-
ceiving antenna index. Being fc the main carrier frequency, �f
the orthogonal frequency-division multiplexing (OFDM) sub-
channel spacing and T = 1/�f the OFDM symbol time, the
CFR for sub-channel k 2 {�K/2, . . . ,K/2� 1}, estimated at
receiver antenna n and time t, Hk,n(t), is modeled as

Hk,n(t) =
P�1X

p=0

Ap(t)e
�j2⇡(fc+k/T )⌧p,n(t) , (1)

where p 2 {0, . . . , P � 1} represents the P multi-path com-
ponents associated with the wireless signal propagation, each
of which is characterized by an attenuation Ap(t) and a ToA
⌧p,n(t) (also referred to as propagation delay). Each multi-path
component p is associated with a static or moving object in
the environment that acts as a reflector, diffractor, or scatterer
for the wireless signal propagating from the transmitter to the
receiver. The propagation delay ⌧p,n(t) is associated with the
position `p(t) of the p-th object in the environment and the
collecting antenna. Each multi-path component is collected by
each antenna in subsequent time instants that depend on the
AoA ✓rx,p(t). Indicating with �rx

p,n(t) the antenna-dependent
contribution to the length of the p-th component, the ToA is
obtained as

⌧p,n(t) =
`p(t) + �rx

p,n(t)

c
, (2)

where c is the speed of light. Considering a linear array with an-
tennas spaced apart by drx and using the left antenna as the ref-
erence, �rx

p,n(t) = n sin(✓rx,p(t))drx, where the AoA ✓rx,p(t)
is measured clockwise starting from the direction perpendicular
to the antenna array. In this work, we use the iterative mD-
Track algorithm for this purpose [9]. Note that we focus on the
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Fig. 3: ROI detection from AoA/ToA estimation and clustering.
The ROI multiplying factor ↵ is the parameter used for obtain-
ing the size of the ROI from the extension of the cluster (a) to
account for localization errors.

identification of the AoA and ToA (2-dimensional mD-Track)
as they are sufficient for providing enough side information
for ROI detection. After that, the AoA/ToA pairs are clustered
through density-based spatial clustering of applications with
noise (DBSCAN), removing the outliers associated with noise.
Hence, the centroids are compared with the centroids of the
clusters associated with the previous video frame to detect any
change in their location. This information about moving targets
is then used to obtain the ROI.
B. AoA and ToA Projection into the Camera Reference System

For proper sensing-assisted ROI selection, the NIC for CFR
data collection and the 360° camera have to share the same
reference system. This would require: (i) the camera and the
sensing NIC to be exactly co-located and, in turn, capture the
same field of view, and (ii) the NIC transmitting opportunistic
signals to trigger CFR estimation to be placed exactly on the
tangent of sensing NIC antenna array, to share the same com-
mon zero of AoA reference frame. However, these requirements
are hardly achievable from a physical perspective due to the
physical location of the devices. In turn, we need to ‘project’
the AoA and ToA estimated through the sensing NIC into the
camera reference system. For this, we designed a procedure
consisting of two steps. First, we set a AoA scale for the 360°
frame assigning 0° to the left edge of the camera field of view.
Hence, we project the AoA \OBD, obtained above, into the
AoA value in the new reference system, hereafter referred to
as ✓. Specifically, we have ✓ = [(\OBD + ✓tx) mod 360]
where mod represents the modulo operation and ✓tx indicates
the location of Wi-Fi transmitter in the 360° reference system.
An example of the processing is depicted in Figure 3 using
real experimental data. For example, \OBD = 50° identifying
ROI 1 corresponds to ✓ = 25°.

V. EXPERIMENTAL SETUP

We evaluated ISAC-EC by implementing the system on
commercial devices available on the market. The system com-
prises an Insta360 Titan 360° camera for video capturing, a
Linux machine for video processing, and an IEEE 802.11ax
network for communication and wireless sensing (localization

Wi-Fi tx

H1
V1

V2

V4

H2

H4 H3
V3

Wi-Fi 
Transceiver &  

Camera

Fig. 4: Experimental setup and ISAC-EC evaluation scenario.

and tracking). The system was configured to capture frames
at a resolution of 10K with a frame rate of 25 frames per
second (FPS). The IEEE 802.11ax network comprised two
commercial-off-the-shelf (COTS) AX200 NIC operating on a
5 GHz Wi-Fi channel with 160MHz of bandwidth. We placed
the Wi-Fi receiver and the 360° camera in closed proximity
and synchronized the Wi-Fi localization and camera systems
by using their internal reference clock. The Wi-Fi transmit-
ter was placed on the opposite side to properly irradiate the
environment and obtain valuable information for sensing. We
carried out the experiments deploying the experimental setup
in an entrance hall that allows evaluating the performance of
ISAC-EC in a real-world environment. The experimental setup
along with the evaluation scenario is presented in Figure 4. We
performed six different tests: a single person walking between
(i) H1 to H2 (ii) H3 and H4 (iii) V1 and V2 (iv) V3 and V4, and
two persons walking simultaneously between (v) H1 & H2 and
H3 & H4 and (vi) V1 & V2 and V2 & V3.

VI. PERFORMANCE EVALUATION

We assessed the performance of ISAC-EC by performing an
extensive experimental data collection campaign and evaluating
three main metrics: (i) accuracy of the DNN task; (ii) wireless
channel occupation; and (iii) end-to-end latency. In the follow-
ing results, the metrics have been averaged over all the frames
captured. For a baseline comparison, we evaluate ISAC-EC
against two state-of-the-art (SOTA) algorithms: (i) YolactA-
COS adaptive edge assisted segmentation [5], (ii) EdgeDuet
context-aware data partition-based WEC [3]. For the DNN task
we chose instance segmentation with YOLOv8m as it is one of
the widely used benchmarking tasks for edge computing.

A. Performance for Different Edge Computing Approaches
We also perform the comparative performance analysis of

ISAC-EC, YolactACOS, and EdgeDuet when the frames for
all the approaches are downsized and compressed to 1/2 and
1/8 respectively. Figure 5a presents the mAP50�95 of the three

2024 WiMob Short Papers, Posters and Demos

613
Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 13:16:52 UTC from IEEE Xplore.  Restrictions apply. 



Compressed
(1/8)

Resized
(1/2)

Original
(10K)

0

40

80

�
�
�

50
�9

5
(%

) ISAC-EC

YolactACOS

EdgeDuet

(a) mAP50�95 of original, resized (1/2), and
compressed (1/8) frames.

Compressed
(1/8)

Resized
(1/2)

Original
(10K)

0.1

1

10

100

C
ha

nn
el

oc
cu

pa
ti
on

/
fr
am

e
(M

B
)

ISAC-EC

YolactACOS

EdgeDuet

(b) Channel occupation of original, resized
(1/2), and compressed (1/8) frames.

Compressed
(1/8)

Resized
(1/2)

Original
(10K)

1

10

100

1000

10000

E
nd

-t
o-

en
d

la
te

nc
y

(m
s)

ISAC-EC

YolactACOS

EdgeDuet

(c) End-to-end latency of original, resized (1/2),
and compressed (1/8) frames.

Fig. 5: Comparative analysis of ISAC-EC with YolactACOS and EdgeDuet.

approaches with original (10K), resized (1/2), and compressed
(1/8) versions of the video frames. The performances for all the
approaches degrade slightly due to the rational image resizing
and compression. The results show that ISAC-EC achieves an
mAP50�95 of 65% whereas the state-of-the-art approaches–
YolactACOS, and EdgeDuet degrade the performance by 41%
and 34% on average with 10K image resolutions.

B. Analysis of Channel Occupation Usage
Analyzing the per-frame channel occupation for all the meth-

ods – ISAC-EC, YolactACOS, and EdgeDuet – is paramount,
considering that the radio spectrum is a pivotal and limited
resource for wireless networks. The average per-frame channel
occupation of ISAC-EC, YolactACOS, and EdgeDuet with
three different frame sizes – original (no resize and no com-
pression), resized (1/2), and compressed (1/8) – is depicted in
Figure 5b. The results show that for original frames, ISAC-EC
reduces the channel occupation by 94.03%, and 93.59% re-
spectively in comparison to YolactACOS and EdgeDuet. To
elaborate further, on average, the size of an original frame is
138.88 MB whereas the average channel occupation required
by ISAC-EC, YolactACOS, and EdgeDuet are 5.5 MB, 92.2
MB and 85.9 MB per frame respectively.

C. End-to-End Latency Analysis
End-to-end latency is one of the critical factors for time-

critical edge computing tasks including a wide range of VR
applications. We analyze the end-to-end latency of ISAC-EC
by comparing it with YolactACOS, and EdgeDuet for different
frame types as presented in Figure 5c. The average end-to-end
latency of ISAC-EC is 188.62 ms, 136.67 ms, and 158.46
ms for original, resized (1/2), and compressed (1/2) frames
respectively, which is much lower than the other two ap-
proaches. With 10K resolution, ISAC-EC improves the latency
by 94.80% and 93.52% in comparison to the YolactACOS and
EdgeDuet respectively.

VII. CONCLUSIONS

In this paper, we proposed a new paradigm for wireless edge
computing called ISAC-EC. Our new approach leverages Wi-
Fi-based localization and tracking to support high resource-
consuming 360° computer vision tasks by obtaining the loca-
tion of ROI based on the environment dynamics. This infor-
mation allows offloading to the edge server only the detected

ROI instead of the entire frame, thus reducing airtime overhead
and overall latency. Our proposed approach reduces the overall
end-to-end latency by 94.80% and 93.52% respectively while
achieving 39.69% and 23.64% net mAP50�95 improvement in
comparison to the SOTA WEC approach – YolactACOS, and
EdgeDuet – in image segmentation tasks.
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