
PhyDNNs: Bringing Deep Neural Networks
to the Physical Layer

Mohammad Abdi∗, Khandaker Foysal Haque∗, Francesca Meneghello†,
Jonathan Ashdown‡, and Francesco Restuccia∗

∗Northeastern University, United States, †University of Padova, Italy, ‡Air Force Research Laboratory, United States

Abstract—Emerging applications require mobile devices to
continuously execute complex deep neural networks (DNNs).
While mobile edge computing (MEC) may reduce the compu-
tation burden of mobile devices, it exhibits excessive latency
as it relies on encapsulating and decapsulating frames through
the network protocol stack. To address this issue, we propose
PhyDNNs, an approach where DNNs are modified to operate
directly at the physical layer (PHY), thus significantly decreasing
latency, energy consumption, and network overhead. Conversely
from recent work in Joint Source and Channel Coding (JSCC),
PhyDNNs adapt already trained DNNs to work at the PHY. To
this end, we developed a novel information-theoretical framework
to fine-tune PhyDNNs based on the trade-off between commu-
nication efficiency and task performance. We have prototyped
PhyDNNs with an experimental testbed using a Jetson Orin
Nano as the mobile device and two USRP software-defined radios
(SDRs) for wireless communication. We evaluated PhyDNNs per-
formance considering various channel conditions, DNN models,
and datasets. We also tested PhyDNNs on the Colosseum net-
work emulator considering two different propagation scenarios.
Experimental results show that PhyDNNs can reduce the end-
to-end inference latency, amount of transmitted data, and power
consumption by up to 48×, 1385×, and 13× while keeping the
accuracy within 7% of the state-of-the-art approaches. Moreover,
we show that PhyDNNs experience 4.3 times less latency than
the most recent JSCC method while incurring in only 1.79%
performance loss. For replicability, we shared the source code
for the PhyDNNs implementation.

Index Terms—Semantic Communication, Edge Computing,
Task-Oriented Communication, Distributed Neural Networks,
Device-Edge Collaborative Inference.

I. INTRODUCTION AND MOTIVATION

Emerging mobile applications require mobile devices to
continuously perform complex computer vision (CV) tasks
using deep neural networks (DNNs). For example, object
detection [1] and semantic segmentation [2] are needed to
include physical movements into digital avatars in virtual
reality (VR) headsets, as well as to superimpose virtual objects
in augmented reality (AR) smart glasses [3].

Existing issues. While mobile edge computing (MEC) can
decrease the computational load on mobile devices [4], there
are still several fundamental limitations that prevent the use
of MEC strategies for AR/VR applications. The first key
issue is that the end-to-end edge offloading latency – which
includes the round-trip device-edge network latency plus the
DNN execution time – has to be extremely low to avoid
VR-related motion sickness. Specifically, it has been shown
that CV tasks have to be executed with end-to-end inference
latency at least equal to the frame rate, which is 8 milliseconds

Approved for Public Release; Distribution Unlimited; AFRL-2024-4883.

at 120 Hz [5]. However, existing wireless networks are not
able to consistently deliver such required latency. For example,
measurements from Suer et al. have shown that Wi-Fi 6 (IEEE
802.11ax) can exhibit up to 60 ms latency – an order of
magnitude greater than what is required in AR/VR systems
[6]. Moreover, in [7], the authors unveil the limitations of fifth-
generation (5G) in fulfilling AR/VR requirements: considering
a system bandwidth of 100 MHz, 5G new radio can serve only
a single user per base station while guaranteeing the above-
mentioned latency requirement. The second critical issue
is that continuously offloading high-resolution images/video
frames may saturate the network capacity. For example, 100
mobile devices connected to the same 5G cellular network
forwarding 8K frames at 120 Hz would create more than 8
Gbps of traffic [8], whereas 5G has a maximum capacity of 1
Gbps in the mid-bands [9]. Therefore, how to achieve AR/VR-
level latency while preserving DNN performance is still an
open problem in mobile edge computing.
Limitations of existing work. Distributed inference ap-
proaches – discussed in detail in Section II – try to reduce
transmission latency by dividing the DNN into head and tail
DNNs, executed by the mobile device and the edge server,
respectively. The head DNN is trained to produce compressed
latent features carrying only the task-relevant information,
which are then transferred to the edge server using Wi-Fi or
cellular networks and given as input to the tail DNN, which
produces the task result (see upper part of Fig. 1).

APP
TX Network Stack

TSP
NET
MAC
PHY

Task 
Input

PHY
Wavefor

m

APP
RX Network Stack

TSP
NET
MAC
PHY

Task 
Output

Deep 
Neural

Network 

Task 
Input

APP
TSP
NET
MAC
PHY

APP
TSP
NET
MAC
PHY

Head
DNN

Latent
Features

Tail
DNN

Task 
Output

Task 
Input

PhyDNN
Head

PhyDNN
Tail

Task 
Output

PhyDNN
Waveform

Fig. 1: (top) Distributed Inference; (bottom) Physical-Layer
DNNs (in short, PhyDNNs).

The key issue is that the DNNs operate at the application
layer (APP), which requires encapsulating and decapsulat-
ing the latent features through the transport (TSP), network
(NET), medium access control (MAC) and physical layer
(PHY). However, distributed inference is usually implemented
in networks where mobile devices have direct links to the
edge server, making higher-level networking functionalities
unnecessary. Hence, as shown in Section IV-C, the full-
stack approach causes excessive communication overhead and
excessive latency (i.e., 251.15 ms for a batch of 64 inputs).

IE
EE

 IN
FO

CO
M

 2
02

5 
- I

EE
E 

Co
nf

er
en

ce
 o

n 
Co

m
pu

te
r C

om
m

un
ic

at
io

ns
 |

 9
79

-8
-3

31
5-

43
05

-1
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IN

FO
CO

M
55

64
8.

20
25

.1
10

44
67

1

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



Proposed approach. To address these fundamental limita-
tions, we propose Physical-Layer DNNs (PhyDNNs), a new
approach to MEC where a pre-trained DNN is modified so
that it can be executed directly at the waveform level. More
in detail, as shown at the bottom of Fig. 1, the output of
the head DNN and the input of the tail DNN are encoded
PHY waveforms. By bringing the DNN to the physical layer,
PhyDNNs avoid the overhead required to encapsulate and
decapsulate the latent representations through the protocol
stack. In other words, PhyDNNs implement a task-oriented
semantic communication link between the transmitter and
the receiver. Importantly, PhyDNNs adapt an already-trained
DNNs to produce PHY waveforms. This makes PhyDNNs
fundamentally different from prior work in Joint Source and
Channel Coding (JSCC), which is discussed in detail in
Section II. In short, JSCC approaches design custom DNNs
and train them from scratch to jointly learn to perform the
task and channel coding. This is not feasible when considering
modern DNNs that are trained on large datasets. In addition,
as discussed in details in Section IV-C, the most recent JSCC
work [10] incurs in latency and energy consumption that are
respectively 4.3 and 7.3 times higher than PhyDNNs.
Summary of Novel Contributions:

• We propose PhyDNNs, a new approach to MEC where
an already-trained DNN is fine-tuned to operate directly
at the PHY, thus learning to perform channel coding on
top of its main inference task. As such, PhyDNNs achieve
a significant decrease in latency by avoiding the encapsula-
tion/decapsulation through the network protocol stack. In stark
opposition with JSCC approaches, the DNN is not specifically
designed for PHY operation. By integrating the channel model
into the fine-tuning process, the modified DNN robustifies the
transmitted waveform against the corresponding distortion;

• We develop a new training procedure that optimizes the
trade-off between communication efficiency and final task
performance, formulated using the Information Bottleneck
(IB) theory [11]. To overcome the computational intractability
of mutual information terms in such formulation, an upper
bound is derived using variational inference approximation.
During training, we leverage the sparsity induced in the
embedding layer to further compress the latent features. This
way, PhyDNNs learn to transmit less data while guaranteeing
high task performance;

• We have prototyped PhyDNNs using USRP software-
defined radios (SDRs) and extensively evaluated their per-
formance in a wide variety of wireless propagation en-
vironments against other MEC approaches. To benchmark
the proposed approach, we have considered three DNNs
(ResNet20, ResNet56, ResNet110) pre-trained on the CIFAR-
10 and CIFAR-100 datasets. Apart from task performance,
we reported the end-to-end inference latency, communication
overhead, and power consumption of PhyDNNs by implement-
ing the head DNN on a Jetson Nano Orin. PhyDNNs have
also been evaluated on the Colosseum network emulator and
through simulations. The state-of-the-art distributed inference
approaches [12], [13] are used as comparison baselines;

• The experimental results show that PhyDNNs are able
to decrease the total inference time, amount of transmitted
data, and energy consumption of the mobile device by up
to 48×, 1385×, and 13× while experiencing only up to 7%
performance loss with respect to [13]. We also show that our
approach achieves 4.3 times less latency than the most recent
JSCC method while incurring in only 1.79% performance
loss. To the best of our knowledge, this work is the first
to demonstrate the feasibility of task-oriented semantic
communications through DNNs operating at the waveform
level using a real-world experimental testbed.

II. RELATED WORK

Distributed Inference. A sizable body of prior work focuses
on finding suitable partitioning points for a DNN architec-
ture based on the relative processing power of the mobile
device and edge server [14], [15]. Since in most DNNs the
representation size increases in the first layers for feature
extraction purposes [16], compression must be done at the
splitting point [13]. Previous work achieves this goal using
a process called “bottleneck injection” [17]–[19]. In such a
process, feature compression is achieved within the backbone
model without adding a separate compression block. The
authors in [20] use simple end task loss such as cross-
entropy loss for an image classification task to retrain the
bottleneck-injected model. To compensate for the reduction
in DNN representational capacity, more recent work utilizes
Knowledge Distillation (KD), which can partially recover the
accuracy drop [21]. In [22], the authors adopt a two-stage
training strategy using different loss terms to recover from
the drop in task performance. While these methods mostly
take heuristic approaches to reduce the width of the splitting
layer, most recent work uses the IB theory to formulate a
rate-distortion minimization problem. Matsubara et al. [23]
learn a prior distribution for the intermediate representation,
and minimize its entropy during training. An entropy coding
scheme is then used to reduce the amount of data to be sent
depending on its entropy. Overall, the key limitation of current
distributed inference systems is that even though they achieve
relatively high compression rates, the entire wireless protocol
stack is used to transfer the latent features to the edge server.
As shown in Section IV-C when using [22], this results in the
communication delay taking up the major part (88.93 %) of the
total inference latency, increasing it to 251.15 ms for a batch
of 64 images. Instead, our approach can reduce the end-to-end
delay to 42.11 ms with only 7% drop in performance.
Joint Source and Channel Coding. Recently, learning-based
JSCC was proposed for image [24], [25] and text transmission
[26]. However, these methods originally aimed to reconstruct
the input message in their output mainly using autoencoders
(AEs) with a noise-injection layer to simulate the channel.
Some recent work has proposed task-oriented JSCC [27] by
replacing the AE output with inference result. However, most
of the existing JSCC schemes assume the channel noise is
directly summed up with each element of the floating-point
encoded tensor [28], [29], which makes them incompatible

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



with digital communication systems, which involve modula-
tion and demodulation.

Recently, Xie et al. [10] addressed this issue by proposing
a task-oriented JSCC model with discrete output, called DT-
JSCC. However, the work in [10] presents three key issues that
make it inapplicable in real-world wireless systems. First, in
line with all JSCC approaches, it requires to design and train
a custom-tailored DNN from scratch, thus not benefiting from
the state-of-the-art designs. On the contrary, our proposed
PhyDNNs do not require the DNN to be specifically
designed to work at the physical layer. Conversely, we
take DNNs designed and trained for a particular task at
the application layer and bring them to the physical layer
by only fine-tuning their parameters. Second, DT-JSCC does
not account for the resource constraints of mobile devices.
Specifically, the encoder consists of 4.36 million parameters
(fixed) in DT-JSCC, which is more than 100 times larger than
the PhyDNNs head, i.e., 42.5 thousand parameters. As such,
its execution on the mobile device takes around 7× more time
and consumes about 8× more energy than the PhyDNNs head.
Third, DT-JSCC focuses on maximizing the redundancy in the
latent space, which leads to more communication overhead.
Moreover, [10] uses a fixed-size quantizer, which results in the
transmission of a fixed amount of data irrespective of the opti-
mized entropy level. In stark opposition, PhyDNNs optimize
the latent dimension based on the accuracy-communication
efficiency trade-off. Specifically, we show in Section IV-C
that to perform image classification on a batch of 64 images,
DT-JSCC transmits 41.7 kilobytes, while PhyDNNs require
only 16 KB. Overall, the end-to-end latency, accounting for
both computing and communication, is 182.53 ms for DT-
JSCC while it is 42.11 ms for PhyDNNs. Moreover, all the
prior work on JSCC has only been tested through simulations.
To the best of our knowledge, this is the first work to
demonstrate the concept of physical-layer DNNs with real-
world testbed experiments.

III. THE PHYDNNS FRAMEWORK

The main idea behind PhyDNNs is that a pre-trained DNN
can be implemented at the physical layer and distributed
between different nodes by adding an embedding layer plus a
modulator block at the transmitter (e.g., mobile device), and a
demodulator combined with an embedding lookup layer at the
receiver (e.g., edge server). Hence, the PhyDNNs framework
consists of the following steps: (i) the pre-trained DNN is
divided into two parts, namely head H and tail T , based
on the relative processing power of the mobile device and
edge server through, e.g., [14]; (ii) at the mobile device,
the embedding layer and the modulator map the head DNN
output (floating-point tensor) into a modulated waveform that
is transmitted through the wireless channel; (iii) at the edge
server, the demodulator and the embedding lookup layer map
the received waveform back into a floating-point tensor that
is processed by the tail DNN to compute the task output. The
whole framework is trained in an end-to-end fashion adding a
non-trainable layer to model the wireless channel. In this way,

Embedding Layer

Head DNN Tail DNNChannel Model
Non-trainable
Trainable

Fig. 2: PhyDNN Probabilistic System Model.

the DNN is fine-tuned to learn waveforms which are robust
to channel distortions. Note that when the pre-trained weights
are not available, the backbone DNN can also be trained from
scratch using the same approach without additional steps.

A. Probabilistic System Model and Assumptions

Henceforth, we adopt the following notation. Random vari-
ables and their realizations are indicated by upper-case and
lower-case letters, respectively. E{X} and H(X) denote the
statistical expectation and entropy of the variable X . The mu-
tual information between X and Z is shown by I(X;Z), while
H(Z|X) represents the conditional entropy of Z given X . We
use DKL(p(x)||q(x)) to denote the Kullback–Leibler (KL)
divergence between p(x) and q(x) probability distributions.
The circularly-symmetric complex Gaussian distribution with
mean µ and covariance matrix Σ is shown by NC(µ,Σ).

The probabilistic model for designing and training the
PhyDNNs distributed system is depicted in Fig. 2. The DNN
task input at the mobile device is denoted as x having a
corresponding target y. Such data is assumed to be generated
from a joint distribution p(x, y). Let z be the Ns discrete latent
features containing only the necessary information to predict y
using x. The extraction of such features (z) from x is modeled
by sampling from a categorical conditional distribution p(z|x).
The head DNN combined with the embedding layer provide
the parameters of such distribution. To reduce training compu-
tational complexity, we adopt the mean-field assumption [30]
that the conditional distributions for different dimensions of z
are independent. Therefore, p(z|x) can be written as

p(z|x) =
Ns∏
i=1

p(zi|x) =
Ns∏
i=1

CAT (fϕ
i (x)). (1)

where fϕ is the function defined by the head plus the em-
bedding with adjustable parameters ϕ. More in detail, the
embedding layer projects the activation at the output of the
head DNN to a categorical distribution over the latent features
using a learnable dictionary δ of M embeddings, where M is
the order of the adopted modulation scheme. Each element of
z, sampled from p(z|x), is a M -ary symbol, which is then
modulated following the digital modulation scheme hm.

The obtained modulated signal is then sent to the edge
server through the wireless channel. In our formulation, we
consider an Additive White Gaussian Noise (AWGN) model
for the channel. Despite this choice, PhyDNNs can be readily
extended to any arbitrary channel model based on which
PhyDNNs will learn to perform Forward Error Correction

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



(FEC) implicitly. The additive noise vector ϵ elements are
sampled from a zero-mean complex Gaussian distribution with
variance σ2, i.e., ϵ ∼ NC(0, σ

2I). Considering the limited
power of the transmitter on the mobile device, we constrain
the peak power of the modulated signal to be P , resulting in
a Signal-to-Noise-Ratio (SNR) value of 10 log10

P
σ2 .

At the receiver side (edge server), the distorted signal is
demodulated using gm. The output of the demodulator is
indicated by ẑ. The digital modulator hm, channel, and de-
modulator gm are modeled as non-trainable yet differentiable
layers in the end-to-end training of PhyDNNs. The equivalent
conditional distribution modeling these layers is p(ẑ|z). The
corrupted latent ẑ is then projected onto floating-point feature
maps through an embedding lookup layer which uses the same
learned embedding dictionary δ as the one on the mobile
device. The recovered feature maps are fed to the tail DNN
T that computes the task result ŷ. The combination of the
embedding lookup layer and the tail DNN defines the function
gθ(ẑ) where θ is the set of trainable parameters. From a
probabilistic viewpoint, the inference at the receiver side is
modeled as sampling from the conditional distribution p(y|ẑ).

B. PhyDNNs Design

Next, we provide the implementation details of the embed-
ding layers and the modulator and demodulator blocks, to-
gether with the channel model used during PhyDNNs training.

Embedding and Embedding Lookup Layer. Fig. 3 shows
an overview of the embedding layer design. Denoting the
deterministic head output as H(x), the value fϕ

i (x) in Eq. (1)
is obtained by projecting each slice Hi(x) of the head output
feature maps onto different embeddings as follows:

fϕ
i (x) = softmax(δT · Hi(x)), (2)

where δ = [e1, e2, · · · , eM ] is the embedding dictionary con-
sisting of M learnable embeddings. From Eq. (1) and Eq. (2),
each element of the embedded vector is obtained as the inner
product similarity between a slice and different embeddings,
converted into probabilities by the softmax function.

The embedding lookup layer at the edge server transforms
the received symbols back into floating-point feature maps.
Therefore, the embedding dictionary needs to be shared be-
tween the mobile device and edge server and is a part of both
parameter sets ϕ and θ. Such parameters are jointly trained in
an end-to-end fashion through backpropagation.

A key challenge is that the main inference task performed
by the DNN and the channel coding task are different in
nature, thus interfering with each other. To mitigate this while
jointly tuning the embedding layer along with the already-
trained DNN, we first cluster the head DNN output slices
by feeding the whole training dataset to the head DNN. The
cluster centroids are then taken to be the initial embeddings.
Additionally, the original DNN weights are frozen at the
beginning of training and, when unfrozen after a few epochs,
they are trained using a lower learning rate compared to the
embedding parameters. To further prevent the distributed DNN
from forgetting its main task, a loss term is also added to force

1
2

M
Embedding
Dictionary

Softmax
M

Head DNN
Output

Fig. 3: PhyDNN embedding layer design.

the DNN excluding the added embedding layers to mimic the
output of the original pre-trained DNN (Section III-C).

Modulator, Demodulator and Channel Model. For the
sake of generality, in this paper we used Phase-shift Key-
ing (PSK) modulation and AWGN channel model. However,
PhyDNNs can easily extend to more advanced modulation
schemes and realistic channel models. PhyDNNs assign the
embeddings to different constellation points based on their
relative distances. Specifically, closer embeddings are asso-
ciated with adjacent points in the constellation to improve
the modulation performance. The modulator, channel model,
and demodulator are included as non-trainable layers during
the end-to-end training so that channel-robust features are
learned. Intuitively, PhyDNNs learn to perform task-oriented
FEC on corrupted representations to get the same task results.
Notice that, except for the synchronization sequence for packet
detection, PhyDNNs introduce no additional communication
protocol overhead.
C. PhyDNNs Loss Function Formulation and Training

The loss function for PhyDNNs training is obtained by
accounting for the trade-off between the communication ef-
ficiency at the mobile device and the task inference perfor-
mance at the edge server. Intuitively, by compressing the
latent features to lower the communication load and latency,
the feature maps that the edge server receives would be
less informative thus resulting in degraded task performance.
On the other hand, if better performance is required, more
symbols should be transmitted by the mobile device to ensure
robustness against channel distortions. From an information-
theoretic viewpoint, PhyDNNs’ goal is to learn a discrete
latent Z which is maximally compressive about X while
being maximally predictive about Y . Such compression and
prediction abilities translate into communication efficiency and
end-task performance in our problem. Hence, by considering
the IB principle [11], the PhyDNNs loss function is written as

LIB = −I(Ẑ;Y ) + β · I(X; Ẑ)

= Ep(x,y)

{
Ep(ẑ|x)

[
− log p(y|ẑ)

]︸ ︷︷ ︸
Task Performance

+ β ·DKL

(
p(ẑ|x)||p(ẑ)

)︸ ︷︷ ︸
Communication Efficiency

}
−H(Y ),

(3)

where 0 ≤ β ≤ 1 is the weight controlling the efficiency-
performance trade-off. By minimizing this loss during training
PhyDNNs, we can find the optimal Z which captures only
the minimal sufficient statistics of X for expressing Y . Note
that H(Y ) can be removed from the formulation since it is a
constant value during minimization.

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



Variational Upper Bound Reformulation. The condi-
tional distribution p(ẑ|x) in Eq. (3) is obtained as p(ẑ|x) =∫
p(z|x)p(ẑ|z)dz. Hence, given p(ẑ|x) and the joint data

distribution p(x, y), the distributions p(ẑ) and p(y|ẑ) in Eq. (3)
are fully determined by the following integrals:

p(ẑ) =

∫∫
p(x, y)p(ẑ|x)dxdy, (4)

p(y|ẑ) =
∫

p(x, y)p(ẑ|x)
p(ẑ)

dx. (5)

However, computing such integrals for high dimensional data
with arbitrary distributions is computationally demanding. To
overcome this issue, we leverage the Variational Information
Bottleneck (VIB) theory [31] by defining two variational
distributions q(ẑ) and q(y|ẑ) to approximate p(ẑ) and p(y|ẑ).
Specifically, we take the stochastic DNN consisting of the
embedding dictionary lookup layer and tail DNN T with
parameters θ – defining the function gθ(ẑ) and deployed
on the edge server – to be the variational approximation of
p(y|ẑ). The type of distribution to be approximated depends
on the task. For example, for a classification task, q(y|ẑ) is
a categorical distribution, i.e., q(y|ẑ) = CAT (gθ(ẑ)). Using
this approximation, the variational upper bound of the task
performance – the first term in Eq. (3) – is obtained as

Ep(x,y)

{
Ep(ẑ|x)

[
− log p(y|ẑ)

]}
=

Ep(x,y)

{
Ep(ẑ|x)

[
− log q(y|ẑ)

]}
−Ep(ẑ)

{
Ep(y|ẑ)

[
log

p(y|ẑ)
q(y|ẑ)

]}
︸ ︷︷ ︸

DKL

(
p(y|ẑ)||q(y|ẑ)

)
≥0

≤ Ep(x,y)

{
Ep(ẑ|x)

[
− log q(y|ẑ)

]}
.

Similarly, we compute the upper bound for the communication
efficiency – the second term in Eq. (3) – as

DKL

(
p(ẑ|x)||p(ẑ)

)
=

DKL

(
p(ẑ|x)||q(ẑ)

)
−DKL

(
p(ẑ)||q(ẑ)

)︸ ︷︷ ︸
≥0

≤ DKL

(
p(ẑ|x)||q(ẑ)

)
.

Since minimizing this upper bound minimizes the KL diver-
gence between p(ẑ|x) and q(ẑ), a certain variational prior
q(ẑ) can be used to induce that probability distribution on the
latent representation. Therefore, to sparsify the latent features
during training, we replace this second upper bound with
Ep(z|x)

[
H(z|x)

]
. This operation is equivalent to reducing the

conditional entropy of latent which is similar in concept to
minimizing the rate in existing work [32]–[34].

Putting everything together, the variational upper bound of
the loss function in Eq. (3) can be written as follows:

LV IB = Ep(x,y)

{
Ep(ẑ|x)

[
− log q(y|ẑ)

]
+ β · Ep(z|x)

[
H(z|x)

]}
.

(6)

Using the mean-field assumption presented in Eq. (1), the
conditional entropy term H(z|x) can be decomposed and
computed as H(z|x) =

∑Ns

i=1 H(zi|x).

Algorithm 1: Training PhyDNNs
Data: Ne (number of epochs),

1 while epoch e = 1 to Ne do
2 Sample a mini-batch of data (xi, yi)

Nmb
i=1 ;

3 while k = 1 to Nmb do
4 while i = 1 to Ns do
5 Compute conditional distribution

p(zk,i|xk)=CAT (fϕ
i (xk));

6 Sample Nmc realizations of latent symbol
{zk,j,i}Nmc

j=1 ∼ p(zk,i|xk) using Gumbel trick;
7 Compute conditional entropy H(zk,j,i|xk);
8 Compute the second term in Eq. (7);
9 Sample realizations of channel noise

{ϵk,j,i}Nmc
j=1 ∼ N (0, σ2);

10 Estimate corrupted symbol ẑk,j,i;
11 Concatenate [ẑk,j,i]

Ns
i=1 to obtain ẑk,j ;

12 Obtain ŷk by feeding to DNN;
13 Compute the first term in Eq. (7);
14 Accumulate the total loss in Eq. (8);
15 Update parameters ϕ and θ through backpropagation;
16 Increase β in Eq. (7);
17 Remove embeddings that are least used.

Computing the Loss Function. An unbiased estimate of
the loss function in Eq. (6) can be obtained using Monte
Carlo sampling and used for training PhyDNNs using the
gradient descent algorithm, as summarized in Algorithm 1 and
explained below. First, by feeding x to the head DNN, the pa-
rameters of the categorical distribution over each latent feature
zi are obtained at the output of the embedding layer (line 5 of
Algorithm 1). Then, a realization of z is sampled from these
distributions and fed to the modulation layer hm. Since such
sampling is not differentiable, we use the Gumbel-softmax
trick [35] to make the probabilistic model differentiable and
trainable using loss backpropagation. Using this trick, given
a mini-batch of Nmb data points {(xk, yk)}Nmb

k=1 (line 2), by
sampling Nmc realizations of z (line 6) and Nmc realizations
of the physical channel noise ϵ (line 9) for each pair (xk, yk),
we have the following Monte Carlo estimation of LV IB in
Eq. (6) (line 13)

L̃V IB =
1

Nmb

Nmb∑
k=1

{ 1

Nmc

Nmc∑
j=1

[
− log q(yk|ẑk,j)

+ β ·
Ns∑
i=1

H(zk,j,i|xk)
]}

,

(7)

where zk,j,i ∼ CAT (fϕ
i (xk)), ϵk,j,i ∼ N (0, σ2), and

ẑk,j,i = gm
(
hm(zk,j,i) + ϵk,j,i

)
.

Learning the embedding using the loss function in Eq. (7) is
challenging as it interferes with the pre-trained DNN weights.
To prevent the pre-trained DNN from forgetting its main infer-
ence task, we add another loss term calculated by excluding
the two embedding layers plus the channel layer from the
PhyDNNs computation graph. From a high-level perspective,
the two embedding layers together with the channel noise
injection can be viewed as a variational encoder-decoder pair.
In theory, one can have more than one set of such layers added
to the backbone DNN in cases where the DNN needs to be
divided into several parts to be distributed against more than

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



two devices. Therefore, each set of variational encoder-decoder
apart from its main output passes the input through the output.
This way, the DNN has an auxiliary output corresponding to
the original architecture (consisting of the head and tail DNNs
only) but using the updated weights in each training iteration.
Adding this binding loss term, the final loss function Ltot

writes as:
Ltot = L̃V IB + Lbind, where (8)

Lbind =
1

Nmb

Nmb∑
i=1

− log Tyi

(
H(xi)

)
. (9)

Latent Feature Compression. While minimizing the sec-
ond term in Eq. (7) during training PhyDNNs reduces the
latent conditional entropy, it does not reduce the amount of
transmitted data by itself. To exploit such minimized entropy,
existing work in neural image compression uses entropy
coding [33], [34], [36] to generate variable-length codes with
the expected length approaching the entropy. However, entropy
coding is not differentiable and cannot be utilized in our
distributed inference system. As such, we propose to compress
the embedding layer as a substitute to entropy coding the latent
representation. Intuitively, reducing the entropy of the latent
features leads to a gradual sharpening of their distribution.
On the other hand, embeddings are intended to capture the
principal components of latent features. Therefore, entropy
reduction in itself makes it easier for the embeddings to
represent the latent distribution. Based on this, our approach
is to gradually increase β in Eq. (7) during training to reduce
the latent entropy progressively (line 16 of Algorithm 1). As a
result, not only the embedding error is minimized but also the
latent distribution can be learned using fewer embeddings. We
then leverage such induced sparsity in the embedding space
to remove the least-used embeddings iteratively resulting in a
compressed embedding layer (line 17). On the other hand,
progressive growth in sparsity enables gradual embedding
dictionary compression avoiding the irreversible damage to
the DNN performance that could happen when performing
an abrupt embedding compression. By fine-tuning for a few
epochs after each removal step, PhyDNNs trade off task
performance for shorter waveforms.

IV. EXPERIMENTAL EVALUATION

We tested the proposed PhyDNNs approach through exten-
sive evaluations with (i) the experimental testbed described
in Section IV-A deployed in two different environments and
considering both line of sight (LoS) and Non-Line-of-Sight
(NLoS) transmissions; (ii) the Colosseum wireless network
emulator [37] considering the urban scenario with a path
loss of 40 dB and 80 dB; and (iii) end-to-end simulations to
evaluate the robustness of PhyDNNs performance considering
a wider range of SNR levels, i.e., SNR∈ [4, 20] dB.

We use image classification for benchmarking, which is
one of the widely considered CV tasks, utilizing the publicly-
available CIFAR-10 and CIFAR-100 datasets. We considered
ResNet20, ResNet56, and ResNet110 [38] as the backbone
DNN models, which are brought to the physical layer by

Tx Frontend
USRP B210 

Rx Frontend
USRP B210 

Mobile Device
Jetson Orin Nano

Edge Server
Intel Xeon CPU
RTX 8000 GPU

Wireless Channel

Blockage

Rx 
Radio

Tx 
Radio

LoS (Tx-Rx distance is 5/15m)

NLoS (Tx-Rx distance is 5/15m)

blockage

Rx 
Radio

Tx 
Radio

Conference room

Office

Fig. 4: Experimental setup for performance evaluation in the
conference room and office. The radio-absorbing cones and
the desk divider are used to create the blockage for NLoS.
PhyDNNs. These architectures have progressively higher in-
ference accuracy at the cost of more computation and memory.
We first assess the PhyDNNs performance by analyzing sev-
eral relevant metrics. Next, we demonstrate the robustness of
PhyDNNs task inference to channel variations through both
experiments and simulations. Finally, we explore the inherent
trade-off between the channel-encoded latent feature size and
inference performance.
A. Experimental Testbed

We set up an end-to-end MEC testbed leveraging two Ettus
USRP B210, operating at 2.4 GHz with 20 MHz of bandwidth,
for the transmitter (Tx) and receiver (Rx) radios, as depicted
at the top of Fig. 4. We used a Jetson Orin Nano – powered by
a 1024-core NVIDIA Ampere GPU and a 6-core Arm Cortex-
A78AE CPU – as the mobile device. The edge server was
implemented by a Linux-based machine, equipped with an
Intel(R) Xeon(R) Gold 6246R CPU, and a Quadro RTX 8000
GPU. We conducted the experiments in an office environment
and a conference room in both LoS and NLoS, as illustrated
in Fig. 4. In the office, the Tx-Rx distance was 3.6 m for LoS
and 7.8 m for NLoS. In the conference room, the distance was
fixed to 7 m for both LoS and NLoS.
B. Performance Benchmarks

The selected full-stack and physical-layer MEC approaches
used as the baseline for comparison are presented below,
together with the transmission process adopted for these two
classes.

Full-Stack MEC: The considered baselines in this class
leverage full-stack IEEE 802.11a Wi-Fi for offloading the rep-
resentations. The latent features generated by the head model
for each batch of images are segmented based on the maximum
transmission unit (MTU) size suitable for TCP transmissions
and encapsulated all the way to the physical layer before
transmission. We used TCP as the transmission protocol to be
in line with the existing distributed inference implementations.

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



B x S x 2

PhyDNN Segment X
Sync Symbols

PhyDNN PHY Layer

B = Batch Size

S = No. of Symbols in a Frame

B x S x 2

Over the Air

Colosseum Massive
Channel Emulator

Mobile Device Edge Server

 Tx SDR  Rx SDR

1- Experimental scenario

2- Emulation scenario

I = B X S X 2

PhyDNN Segment X
Sync Symbols

PhyDNN PHY Layer

B = Batch Size

L X W X H = Latent Dimension of a Single Frame

S = No. of Symbols for a Frame 

S X 2

PhyDNN Segments (payload)

S X 2

Sync Symbols

PhyDNN Received PHY

Retrieved PhyDNN Segment X

 Retrieved PhyDNN payload

I = B X S X 2

Over the Air 
Transmission

Colosseum Massive Channel 
Emulator

Mobile Device Edge Server

 Tx SDR  Rx SDR

1- Experimental scenario

2- Emulation scenario

S X 2 S X 2

PhyDNN Segment X
Sync Symbols

PhyDNN PHY Layer
B X S X 2

PhyDNN Segment X
Sync Symbols

PhyDNN PHY Layer

B = Batch Size

S = No. of Symbols for a Frame 

B X S X 2

Over the Air 
Transmission

Colosseum Massive
Channel Emulator

Mobile Device Edge Server

 Tx SDR  Rx SDR

1- Experimental scenario

2- Emulation scenario

S X 2
PhyDNN Segments

S X 2

PhyDNN Segment X
Sync Symbols

PhyDNN PHY Layer

S X 2
PhyDNN Segments

S X 2
PhyDNN Segments
S x 2 S x 2

PhyDNN Segments
S x 2 S x 2

Fig. 5: Transmission procedure of PhyDNNs waveforms.
Using UDP makes the task execution unreliable as the edge
server drops the corrupted representations, not providing any
results. We consider the following approaches:
• Split Computing (SC): The head DNN consists of the first
layer of backbone ResNet only (as in the seminal work [12]).
• BottleFit (BF): To reduce the amount of transferred data, a
compressed intermediate representation is learned. According
to the two-stage algorithm in [22], we reduce the width of the
last convolutional layer in the first ResNet layer and utilize KD
to compensate for the accuracy drop. We use two versions of
BF having a reduced width of 1 and 2 kernels.

Physical-Layer MEC: The head DNN directly outputs
channel-encoded symbols for each batch of images. As shown
in Fig. 5, the encoded symbols are divided into segments,
where each segment is then encapsulated with a PHY header
for packet detection and synchronization, and transmitted to
the edge server. In addition to PhyDNNs, we consider DT-
JSCC for comparison as detailed below. Note that we do
not consider retransmissions of corrupted latent features as
both approaches are designed to compensate for channel
impairments and the edge server is always able to return a
task result given a latent signal.
• DT-JSCC: This method has been proposed in [10] and rep-
resents the most recent task-oriented JSCC work. As discussed
in Section II, the authors introduce custom architectures for
two different datasets (MNIST and CIFAR-10). Hence, we
selected the DT-JSCC architecture designed for CIFAR-10 for
our comparison. The encoder consists of 4 convolutional layers
and 2 residual blocks, which outputs 512 feature maps in the
latent space. A quantizer is then used to discretize the latent
for transmission. As DT-JSCC has not been implemented on
real hardware in [10], we used the same PHY transmission
procedure designed for PhyDNNs for a fair comparison.
• PhyDNNs (our): We set the length of each embedding to
match the number of feature maps at the output of the head
DNN. The learning rate of the embedding layer parameters
δ is 10−3, while it is set to 10−4 for {ϕ, θ} parameters. We
used 12 dB for the channel SNR when training PhyDNNs. We
start by setting the trade-off parameter β = 10−4 in Eq. (7)
and increase it linearly during the fine-tuning process with an
overall increase of 10× over all the epochs.
C. Experimental Results

Our assessment focuses on the following performance met-
rics: (i) end-to-end latency, (ii) communication overhead, (iii)

energy consumption, and (iv) performance of the inference
task. In all of our experiments, we consistently used an input
batch size of 64 to report the results. Note that, as PhyDNNs
do not have retransmission mechanism, the results are obtained
as the average of the LoS and NLoS scenarios.

End-to-end Latency. We measure the total inference la-
tency as the execution time of head and tail DNNs – at
the mobile device and edge server respectively – plus the
communication delay, where the latter mainly depends on the
transmitted representation size and communication overhead.
Fig. 6a, 6b, and 6c present the end-to-end latency of PhyDNNs
compared to the reference full-stack approaches obtained
through experimental evaluation in the office environment. The
results for both LoS and NLoS show that SC has the highest
latency, while PhyDNNs reach the lowest value for all three
ResNet models. On top of that, PhyDNNs outperform BF-1
and BF-2 by 2.3 and 3.8 times respectively (averaged across
the LoS and NLoS scenarios, and the three models). This is
while the PhyDNNs head execution time on the mobile device
takes only around 1 millisecond more than other distributed
approaches.

The end-to-end latency breakdown shows that the commu-
nication delay – being the largest contribution – of PhyDNNs
is 16.75 and 17.56 times lower (on average across the models)
than BF-1 for the LoS and NLoS scenarios, respectively.
Indeed, PhyDNNs do not add overhead due to the protocol
stack and directly feeds the channel-encoded waveforms to
the PHY. The communication latency of baseline approaches
increases by 4.8% on average in NLoS compared to LoS
due to the packet loss and retransmission. Instead, PhyDNNs
does not employ retransmission as it operates at the PHY and
compensates for channel impairments.

The end-to-end latency of different approaches when eval-
uated in the conference room and in the Colosseum network
emulator are depicted in Fig. 7a and 8a and are in line with
the above findings, proving the robustness of PhyDNNs to
different wireless environments.

Communication Overhead. Fig. 6d shows the amount of
data transmitted (payload and protocol overhead) by various
approaches under both LoS and NLoS conditions. The results
indicate that for a batch size of 64, SC sends the highest
amount of data, i.e., 4096 KB, whereas PhyDNNs require the
least, i.e., 16 KB. Remarkably, the payload data transmitted by
PhyDNNs is 16 and 32 times smaller than that of BF-1 and BF-
2, respectively. This is because, while BF-1 and BF-2 trans-
fer compressed representations, PhyDNNs directly transmits
channel-encoded waveforms, which require a substantially
lower amount of data. Fig. 6d shows that PhyDNNs advantage
becomes even more in the NLoS scenario. PhyDNNs only add
256 bytes of control data, reducing the overall data overhead
by 180× and 363× in the LoS scenario and by 237× and
484× in the NLoS scenario, compared to BF-1 and BF-2,
respectively. The increase in the control data transmission due
to TCP and MAC layer retransmissions is linked with the
degradation of the channel quality.

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
101
102
103

En
d-

to
-e

nd
la

te
nc

y
(m

s)

LoS NLoS

Mobile Device
Comm.

Edge Server

(a) Latency – ResNet20

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
101
102
103

En
d-

to
-e

nd
la

te
nc

y
(m

s)

LoS NLoS

Mobile Device
Comm.

Edge Server

(b) Latency – ResNet56

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
101
102
103

En
d-

to
-e

nd
la

te
nc

y
(m

s)

LoS NLoS

Mobile Device
Comm.

Edge Server

(c) Latency – ResNet101

SCBF-2
BF-1 SCBF-2

BF-1

PhyDNN
104

105

106

To
ta

lt
ra

ns
m

it
te

d
da

ta
(b

yt
es

)

LoS NLoS
(d) Total transmitted data

Fig. 6: End-to-end latency and total transmitted data (payload and overhead combined) for both LoS and NLoS in the office
environment. A batch size of 64 is considered. As PhyDNNs do not account for retransmissions, the results are measured as
the average of the LoS and NLoS scenarios.

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
101
102
103

En
d-

to
-e

nd
la

te
nc

y
(m

s)

LoS NLoS

Mobile Device
Comm.

Edge Server

(a) Latency – ResNet56

SCBF-2
BF-1 SCBF-2

BF-1

PhyDNN
104

105

106

To
ta

lt
ra

ns
m

it
te

d
da

ta
(b

yt
es

)

LoS NLoS
(b) Total transmitted data

Fig. 7: Evaluation in the conference room with 7 m distance
between the transmitter and the receiver, in LoS and NLoS.

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN

Path loss

101
102
103

En
d-

to
-e

nd
la

te
nc

y
(m

s)

40 dB 80 dB

Mobile Device
Comm.

Edge Server

(a) Latency – ResNet56

SCBF-2
BF-1 SCBF-2

BF-1

PhyDNN

Path loss

104

105

106

To
ta

lt
ra

ns
m

it
te

d
da

ta
(b

yt
es

)

40 dB 80 dB

(b) Total transmitted data
Fig. 8: Evaluation in Colosseum using the urban emulation
scenario considering a path loss of 40 dB and 80 dB.

The same trend is visible in the results of the evaluation
in the conference room and with the Colosseum emulator,
reported in Fig. 7b and 8b. The only distinction is that the
conference room experiences higher difference between LoS
and NLoS results due to the ideal blockage of the direct path
signal using the absorbing cones.

Energy Consumption. The primary factors contributing to
this include head DNN execution at the mobile device and
transmission of latent representations. We compare the energy
consumption of different approaches in both LoS and NLoS
conditions in Fig. 9a, 9b, and 9c. The results show that energy
consumed for communication is the primary contributor to
the total energy consumption of mobile device. However, it is
more dominant with lightweight DNNs like ResNet20 in com-
parison to the more complex ones like ResNet110 due to their
shorter execution time. PhyDNNs in comparison to BF-1 and
BF-2, improve the overall energy consumption by 135.35%
and 295.53% in LoS scenario and 142.89% and 312.41% in
NLoS scenario on average across different DNNs. For different
architectures, the head DNN execution energy of BF-1 and
PhyDNNs varies only by 20.6 mJ which is only 5.16% of the
total energy consumption of BF-1 on average. This proves the
importance of transmission energy minimization to improve
the overall energy consumption. Compared to BF-1, PhyDNNs
reduce the energy consumption by 18.52 and 19.42 times in
LoS and NLoS scenarios, respectively.

Inference Performance Robustness Against Changing
Communication Environments. In this section, we evaluate
the task inference accuracy (at the edge server) of PhyDNNs
considering various propagation environments. We first carried
out a systematic performance evaluation through simulations
by changing the SNR in the range from 4 dB to 20 dB.
Fig. 10 illustrates the classification error rate when using the
trained PhyDNNs in different channel conditions for CIFAR-
10 and CIFAR-100 datasets. While an AWGN channel model
with a SNR of 12 dB is used for PhyDNNs training (see
Section IV-B), we observe that PhyDNNs perform well also
when tested in other channel conditions. For example, Fig. 10
shows that in the case of CIFAR-10 (left plot), the change
in the task error rate is less than 3% and 5% for ResNet20
and ResNet110, respectively. This proves that PhyDNNs
effectively extract robust features that guarantee consistent
performance across varying channel conditions. Robustness to
channel variations has also been evaluated experimentally in
the office environment for the LoS and NLoS scenarios in
Table I. The results show that the accuracy of ResNet56 and
ResNet110 drops only by around 8% and 7%, respectively in
the LoS scenario compared to the baseline approaches. We
remind that, by relying on TCP, the full-stack approaches do
not experience any accuracy drop when the DNN is executed
in a distributed way. In the NLoS scenario, PhyDNNs face
only about 4% more performance loss for both ResNet56 and
ResNet110 than the LoS case. Moreover, the experimental
accuracy is only around 5% less than the simulation-based
results. Overall, this proves the PhyDNNs practicality in real-
life environments.

Performance-Communication Trade-off. The trade-off
between the communication efficiency and task performance
is controlled by the parameter β in Eq. (7). Hence, β controls
the number of transmitted kilobytes. To evaluate the impact
of this parameter, Table II shows the final β value and its
associated task accuracy achieved by PhyDNNs applied to
different ResNet models using CIFAR-10 and CIFAR-100.
The results are obtained through simulations using a SNR
of 12 dB and show that when β is increased from 10−5 to
10−3, more emphasis is put on the entropy term in Eq. (7)
resulting in fewer symbols (shorter waveform) to be sent at the
cost of reducing the inference accuracy. However, PhyDNNs
only experience an accuracy loss of up to 3% when sending
16 KB of latent data instead of 32 KB. This can be attributed
to the over-parameterization redundancy present in most state-

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN

102

103

104
En

er
gy

co
ns

um
pt

io
n

(m
J)

LoS NLoS

Mobile Device Comm.

(a) ResNet20

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
102

103

104

En
er

gy
co

ns
um

pt
io

n
(m

J)

LoS NLoS

Mobile Device Comm.

(b) ResNet56

SC BF-2
BF-1 SC BF-2

BF-1

PhyDNN
102

103

104

En
er

gy
co

ns
um

pt
io

n
(m

J)

LoS NLoS

Mobile Device Comm.

(c) ResNet101

Fig. 9: Energy consumption for LoS and NLoS scenarios with ResNet architectures.

TABLE I: Experimental task accuracy of
PhyDNNs using CIFAR-10. The baseline
refers to all the full-stack approaches.

ResNet-20 ResNet-56 ResNet-110
LOS 78.23 % 82.34 % 84.85 %

NLOS 74.64 % 78.51 % 80.74 %
Baseline 87.52% 90.6% 92.26%

4 8 12 16 20
SNR (dB)

7
9

11
13
15

Er
ro

r
R

at
e

(%
)

ResNet20 ResNet56 ResNet110

4 8 12 16 20
SNR (dB)

25
28
31
34
37
40
43

Fig. 10: Simulation-based task error rate when varying the
SNR using (left) CIFAR-10 and (right) CIFAR-100 datasets.

TABLE II: Simulation-based trade-off between transmitted
data and inference accuracy for CIFAR-10 and CIFAR-100.

CIFAR-10 32 KB 24 KB 16 KB
β = 10−5 β = 10−4 β = 10−3

ResNet-20 82.89 % 81.48 % 80.07 %
ResNet-56 88.59 % 87.29 % 85.9 %

ResNet-110 89.27 % 88.69 % 87.81 %

CIFAR-100 32 KB 24 KB 16 KB
β = 10−5 β = 10−4 β = 10−3

ResNet-20 67.72 % 66.6 % 65.75 %
ResNet-56 72.72 % 71.39 % 70.6 %

ResNet-110 74.71 % 74.04 % 73.88 %

of-the-art capacity-rich models. Such redundancy is effectively
leveraged by PhyDNNs to compensate for channel losses even
when sending 4 times less data to the edge server.

Comparison with DT-JSCC. In Table III, we showcased
relevant metrics for comparison between PhyDNNs when
using ResNet56 as the backbone and the PHY MEC baseline
(DT-JSCC). As discussed above, the DT-JSCC encoder is
more than 100 times larger than the PhyDNNs head. The
whole ResNet20 has a total of 250 K parameters which is 17
times smaller than the DT-JSCC encoder alone. This is mainly
because JSCC schemes are designed for data transmission
rather than distributed inference, thus ignoring the resource
constraints of the mobile device. As illustrated in Fig. 11,
executing the DT-JSCC encoder on the mobile device takes
around 7× more time and consumes about 8× more energy
than the PhyDNNs head, making them impractical in time-
sensitive applications. Also, on average, DT-JSCC transmits
2.5 times more data for each batch of images. More in detail,
DT-JSCC sends 41.7 KB of data for a batch size of 64,
while PhyDNNs experience only 1.79% performance drop by
transmitting only 16 KB. Note that the reported accuracy in
Table 11 and the results in Fig. 11 are the average over LoS
and NLoS scenarios in the office environment.

TABLE III: Comparison
between DT-JSCC and
PhyDNNs on CIFAR-10.

DT-JSCC PhyDNNs
#Params
(Head) 4.36 M 42.5 K

#FLOPs
(Head) [Mac] 618.4 M 291.65 M

Accuracy [%] 82.22 80.43

JSC
C

PhyDNN
JSC

C

PhyDNN
0

100

200

En
d-

to
-e

nd
la

te
nc

y
(m

s)

Mobile Device
Edge Server

Comm.

500

1000

1500

En
er

gy
co

ns
um

pt
io

n
(m

J)

Fig. 11: Latency and energy
consumption comparison be-
tween DT-JSCC and PhyDNNs.

V. CONCLUSIONS AND SUMMARY OF IMPACT

In this work, we have proposed PhyDNNs, a new MEC
approach where DNNs are modified to work directly at the
physical layer. PhyDNNs avoid training the DNN from scratch
and instead modify a pre-trained DNN to learn channel coding
in addition to its inference task. Therefore, the extracted latent
features can be transmitted at the waveform level significantly
reducing both the communication delay and network load.
We have developed a framework based on the IB theory
to optimize the trade-off between the number of transmitted
symbols and end task performance during channel coding. We
have also prototyped PhyDNNs with an experimental testbed
and shown that PhyDNNs decrease the inference latency,
communication overhead, and energy consumption by up to
48×, 1385×, and 13× while keeping the accuracy within 7%
with respect to the state-of-the-art approaches.

To the best of our knowledge, this paper is the first
to experimentally demonstrate a task-oriented semantic
communication system. As communication becomes the bot-
tleneck in MEC applications, we believe this paper represents
a step forward in addressing the current issue. As an inter-
esting future research direction, we are planning to extend
the proposed approach to the case where multiple mobile
devices need to jointly minimize the amount of transmitted
data necessary to perform a collaborative task. The authors
have provided public access to their code and data at https:
//github.com/AbdiMohammad/PhyDistInf. Overall, we hope
this work will elicit further discussions and follow-up
work in the semantic communications and mobile edge
computing communities.

ACKNOWLEDGMENTS

This work is funded in part by the National Science Founda-
tion (NSF) grant CNS-2134973, ECCS-2229472, and ECCS-
2329013, by the Air Force Office of Scientific Research under
contract number FA9550-23-1-0261, by the Office of Naval
Research under award number N00014-23-1-2221.

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] X. Wu, D. Sahoo, and S. C. Hoi, “Recent Advances in Deep Learning
for Object Detection,” Neurocomputing, vol. 396, pp. 39–64, 2020.

[2] Y. Mo, Y. Wu, X. Yang, F. Liu, and Y. Liao, “Review the State-of-the-
art Technologies of Semantic Segmentation Based on Deep Learning,”
Neurocomputing, vol. 493, pp. 626–646, 2022.

[3] F. Tao and Q. Qi, “Make More Digital Twins,” Nature, vol. 573,
no. 7775, pp. 490–491, 2019.

[4] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A Full Dive into Realizing the Edge-
enabled Metaverse: Visions, Enabling Technologies, and Challenges,”
IEEE Communications Surveys & Tutorials, pp. 1–1, 2022.

[5] K. Raaen and I. Kjellmo, “Measuring Latency in Virtual Reality Sys-
tems,” in International Conference on Entertainment Computing (ICEC),
pp. 457–462, Springer, 2015.

[6] M.-T. Suer, P. Jose, and H. Tchouankem, “Experimental Evaluation
of IEEE 802.11 ax - Low Latency and High Reliability with Wi-
Fi 6?,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), pp. 377–382, IEEE, 2022.

[7] M. Laha, D. Roy, S. Dutta, and G. Das, “AI-assisted Improved Service
Provisioning for Low-latency XR over 5G NR,” IEEE Networking
Letters, 2023.

[8] S. Iwasaki, X. Lei, K. Chida, Y. Sugito, K. Iguchi, K. Kanda, H. Miyoshi,
and Y. Uehara, “The required video bitrate for 8k120-hz real-time
temporal scalable coding,” in 2020 IEEE International Conference on
Consumer Electronics (ICCE), pp. 1–5, IEEE, 2020.

[9] R. Dilli, “Analysis of 5G Wireless Systems in FR1 and FR2 Frequency
Bands,” in International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA), pp. 767–772, IEEE, 2020.

[10] S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information
bottleneck for task-oriented communication with digital modulation,”
IEEE Journal on Selected Areas in Communications, 2023.

[11] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[12] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 615–629, 2017.

[13] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “Sc2 benchmark:
Supervised compression for split computing,” Transactions on machine
learning research, 2023.

[14] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Dis-
tributed inference acceleration with adaptive DNN partitioning and
offloading,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pp. 854–863, IEEE, 2020.

[15] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pp. 1423–1431, IEEE, 2019.

[16] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565–576, 2019.

[17] A. E. Eshratifar, A. Esmaili, and M. Pedram, “BottleNet: A Deep Learn-
ing Architecture for Intelligent Mobile Cloud Computing Services,”
in Proceedings of IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pp. 1–6, IEEE, 2019.

[18] J. Shao and J. Zhang, “BottleNet++: An End-to-end Approach for Fea-
ture Compression in Device-Edge Co-Inference Systems,” in Proceed-
ings of IEEE International Conference on Communications Workshops
(ICC Workshops), pp. 1–6, IEEE, 2020.

[19] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Joint device-edge infer-
ence over wireless links with pruning,” in 2020 IEEE 21st international
workshop on signal processing advances in wireless communications
(SPAWC), pp. 1–5, IEEE, 2020.

[20] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh,
“Distilled Split Deep Neural Networks for Edge-Assisted Real-Time
Systems,” in Proceedings of the Workshop on Hot Topics in Video
Analytics and Intelligent Edges, pp. 21–26, 2019.

[21] Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, vol. 8,
pp. 212177–212193, 2020.

[22] Y. Matsubara, D. Callegaro, S. Singh, M. Levorato, and F. Restuccia,
“BottleFit: Learning Compressed Representations in Deep Neural Net-
works for Effective and Efficient Split Computing,” in Proceedings of
IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2022.

[23] Y. Matsubara, R. Yang, M. Levorato, and S. Mandt, “Supervised
Compression for Resource-Constrained Edge Computing Systems,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 2685–2695, 2022.

[24] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Transactions on
Cognitive Communications and Networking, vol. 5, no. 3, pp. 567–579,
2019.

[25] D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep joint source-channel
coding of images with feedback,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 178–193, 2020.

[26] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-
channel coding of text,” in 2018 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp. 2326–2330,
IEEE, 2018.

[27] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless image re-
trieval at the edge,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 1, pp. 89–100, 2020.

[28] Y. M. Saidutta, A. Abdi, and F. Fekri, “Joint source-channel coding
over additive noise analog channels using mixture of variational autoen-
coders,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 7, pp. 2000–2013, 2021.

[29] J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear
transform source-channel coding for semantic communications,” IEEE
Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2300–
2316, 2022.

[30] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-
tion, vol. 112, no. 518, pp. 859–877, 2017.

[31] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” arXiv preprint arXiv:1612.00410, 2016.

[32] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” arXiv preprint arXiv:1611.01704, 2016.

[33] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Vari-
ational image compression with a scale hyperprior,” arXiv preprint
arXiv:1802.01436, 2018.

[34] D. Minnen, J. Ballé, and G. D. Toderici, “Joint autoregressive and
hierarchical priors for learned image compression,” Advances in neural
information processing systems, vol. 31, 2018.

[35] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[36] S. Singh, S. Abu-El-Haija, N. Johnston, J. Ballé, A. Shrivastava, and
G. Toderici, “End-to-end learning of compressible features,” in 2020
IEEE International Conference on Image Processing (ICIP), pp. 3349–
3353, IEEE, 2020.

[37] T. Melodia, S. Basagni, K. R. Chowdhury, A. Gosain, M. Polese,
P. Johari, and L. Bonati, “Colosseum, the world’s largest wireless
network emulator,” in Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pp. 860–861, 2021.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 07:27:33 UTC from IEEE Xplore.  Restrictions apply. 


