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Abstract—In this paper, we present MAGIC, a novel ap-
proach to gesture recognition utilizing mmWave multiple-input
multiple-output (MIMO) Channel State Information (CSI). Un-
like existing mmWave gesture recognition methods that often
rely on radar signals, MAGIC leverages CSI extracted from
mmWave MIMO integrated sensing and communication (ISAC)
systems. While advanced radar systems, such as those operating
in frequency-modulated continuous wave (FMCW) mode, can
achieve high frequency and spatial resolution, they typically
require dedicated sensing infrastructure, which increases system
complexity. In contrast, MAGIC utilizes high-granular CSI from
orthogonal frequency-division multiplexing (OFDM) systems,
enabling fine spatial, temporal, and frequency-domain informa-
tion for robust gesture recognition. This eliminates the need
for dedicated radar transceivers, simplifying the system and
reducing transmission overhead. MAGIC employs a learning-
based architecture, integrating a temporal convolutional net-
work (TCN) to classify gestures by capturing long-range tem-
poral dependencies. To address the critical challenge of domain
adaptation in gesture recognition, we propose adaptive temporal
embedding network (ATEN), a meta-learning framework that
combines the temporal modeling capabilities of TCN with task-
specific adaptation mechanisms. We evaluate MAGIC through a
comprehensive data collection campaign involving two subjects
performing 10 micro gestures across three different environ-
ments, with synchronized video streams providing the ground
truth. The proposed system achieves a baseline accuracy of
99.24% using TCN. The system continues to perform well –
achieving up to 98.82% accuracy – when adapting to new do-
mains using ATEN, outperforming other state-of-the-art domain
adaptation methods by 14% on average.

I. INTRODUCTION

Next-generation wireless systems must support intelligent,
autonomous, and immersive applications, driving the need
for significantly enhanced network capabilities [1]. Emerg-
ing applications such as augmented reality (AR) and virtual
reality (VR) demand data rates exceeding 40 Gbps to enable
seamless user experiences and efficient neural network pro-
cessing [2]. In contrast, current wireless technologies, includ-
ing Wi-Fi, typically support data rates up to 1.2 Gbps [3],
[4]. Thus, to meet these stringent requirements necessitates
moving beyond traditional sub-6 GHz bands and leverage
the larger bands available in the millimeter-wave (mmWave)
spectrum.

The mmWave spectrum offers a substantial bandwidth ad-
vantage, enabling high-data-rate communications. Moreover,
mmWave radio transmissions offer precise wireless sens-
ing capabilities beyond communication due to super high-
resolution channel information. The intuition behind wireless
sensing is that any object in the physical world acts as an
obstacle to the propagation of radio signals that undergo
reflections, diffractions, and scattering, making the signals
collected at the receiver differ from the transmitted ones.
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Fig. 1: MAGIC vs existing radar-based mmWave gesture
recognition systems.
Wireless sensing aims to detect changes in radio signals and
associate them with the way any object or human stays/moves
in the environment, thus allowing device-free monitoring
solutions. This dual capability positions mmWave systems
as a promising foundation for applications requiring fine-
grained sensing, such as human activity classification [5],
[6], gesture recognition [7], [8], intrusion detection [9], and
patient monitoring [10].

While radar-based systems are widely used for ges-
ture recognition in the mmWave band, they require dedi-
cated sensing infrastructure, which adds complexity to the
system. Advanced radar systems, such as those operating
in frequency-modulated continuous wave (FMCW) mode,
achieve high spatial and frequency resolution, but their re-
liance on hardware designed solely for sensing tasks can limit
their integration with communication systems.

In contrast, mmWave Channel State Information (CSI)
offers a transformative approach by leveraging the spatial
diversity of multiple-input multiple-output (MIMO) systems
(e.g., 8x8 antennas) and the high-frequency granularity of
orthogonal frequency-division multiplexing (OFDM) sub-
channels across a wide bandwidth. This provides rich spa-
tial, temporal, and frequency-domain data, enabling detailed
characterization of gesture patterns. Furthermore, CSI-based
sensing seamlessly integrates into integrated sensing and
communication (ISAC) systems, eliminating the need for
dedicated radar hardware, simplifying system design, and
reducing overall complexity and sensing overhead.

In stark contrast to the traditional radar-based systems,
we propose MAGIC, a domain adaptive gesture recognition
system that integrates sensing functionalities directly into
communication systems using mmWave MIMO CSI. As de-
picted in Figure 1, by leveraging rich spatial, temporal, and

131

2025 IEEE 26th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)

2770-0542/25/$31.00 ©2025 IEEE
DOI 10.1109/WoWMoM65615.2025.00030

20
25

 IE
EE

 2
6t

h 
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n 

a 
W

or
ld

 o
f W

ire
le

ss
, M

ob
ile

 a
nd

 M
ul

tim
ed

ia
 N

et
w

or
ks

 (W
oW

M
oM

) |
 9

79
-8

-3
31

5-
38

32
-3

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

W
oW

M
oM

65
61

5.
20

25
.0

00
30

Authorized licensed use limited to: Northeastern University. Downloaded on September 22,2025 at 12:59:54 UTC from IEEE Xplore.  Restrictions apply. 



frequency-domain data offered by CSI, MAGIC significantly
improves sensing precision while reducing system complex-
ity and deployment overhead.

The core of MAGIC is a learning-based architecture that
incorporates a temporal convolutional network (TCN) to ef-
fectively capture long-range temporal dependencies from CSI
for gesture classification. Moreover, domain generalization
being one of the crucial challenges in wireless sensing, we
also propose adaptive temporal embedding network (ATEN)
– a novel meta-learning approach that combines the temporal
features extracted from TCN with the task-specific meta-
learning framework for domain adaptation with only a few
data samples from the new environment or subject.

Summary of Contributions:
• We propose MAGIC, a novel gesture recognition system
that leverages CSI to seamlessly integrate sensing function-
alities into mmWave MIMO ISAC systems. By utilizing the
high-resolution wideband CSI estimated during communica-
tion, MAGIC provides fine spatial, temporal, and frequency-
domain granularity for robust gesture recognition. Unlike
radar-based systems, which require dedicated sensing hard-
ware, MAGIC eliminates this need, reducing system complex-
ity, and minimizing sensing overhead while maintaining high
performance in diverse environments;

•We develop ATEN, an innovative domain generalization al-
gorithm that integrates TCN for efficient long-range temporal
feature extraction with a task-specific meta-learning frame-
work to adaptively align query features with domain-specific
contexts, enabling adaptation to unseen environments and
subjects. To enhance robustness, we introduce the domain-
adaptive preprocessing pipeline (DAPP) for systematic mit-
igation of domain-specific artifacts, incorporating path loss
compensation, spectral alignment, and entropy-guided filter-
ing. This preprocessing pipeline transforms raw mmWave
CSI into a domain-invariant representation, ensuring reliable
gesture recognition across diverse environments;

•We evaluate MAGIC through extensive data collection cam-
paigns involving three environments and ten micro gestures,
achieving up to 99.24% accuracy for gesture recognition
with baseline TCN and maintaining 98.82% accuracy with
ATEN under domain-adaptive conditions. To foster repro-
ducibility, we open-source all the datasets, and the codes at
https://github.com/kfoysalhaque/MAGIC.

II. MAGIC SYSTEM WORKFLOW

The channel estimates, expressed as channel frequency
responses (CFRs)1, form the basis for the MAGIC’s func-
tionality and are obtained via a MIMO procedure known as
channel sounding, illustrated in Step 1 of Figure 2. During
channel sounding, the beamformer broadcasts null data pack-
ets (NDPs), allowing the channel properties between every
pair of m transmitter antennas and n receiver antennas to

1We use the terms CSI and CFR interchangeably for the rest of the paper.
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Fig. 2: The overview of MAGIC gesture recognition system.

be measured across the entire operational bandwidth. The
beamformer r estimates the CFR, Hm,n

r on each OFDM sub-
channel k ∈ {1, . . . ,K} by comparing the received signal
Ym,n
r with the known transmitted signal Xm,n

r . The CFR is
calculated as Hm,n

r = Ym,n
r /Xm,n

r , resulting in a matrix of
dimensions M × N , where M and N represent the number
of transmit and receive antenna, respectively. Indicating with
hm,nk,s the CFR of the S-th sample at theK-th subchannel from
transmit antenna m to receive antenna n, the CFR matrix can
be expressed as:

Hm,n
r =



hm,nr,1,1 . . . hm,nr,1,s . . . hm,nr,1,K
...

...
...

hm,nr,s,1 . . . hm,nr,s,k . . . hm,nr,s,K
...

. . .
...

. . .
...

hm,nr,S,1 . . . hm,nr,S,k . . . hm,nr,S,K

 . (1)

We leverage MIMO transmissions to estimate and extract the
CFR during the execution of different gestures. The CFR is
then forwarded through a rigorous preprocessing pipeline,
as depicted in Step 2 of Figure 2. This preprocessing stage
leverages the DAPP framework, detailed in Section II-A,
to transform the raw CFR data into a domain-independent
representation. By mitigating environment-specific artifacts
and highlighting gesture-relevant features, DAPP ensures the
data is robust for model training. Subsequently, the pro-
cessed data undergoes augmentation, as described in Sec-
tion II-B, to further enhance the generalization capabilities of
the learning architecture. The combination of preprocessed
and augmented CFR data forms a comprehensive and diverse
dataset, ready for training the MAGIC learning architecture.
Hence, the MAGIC learning architecture ATEN is trained
using this dataset (Step 3 of Figure 2). ATEN integrates the
temporal modeling capabilities of TCN with a task-adaptive
meta-learning framework, enabling the system to generalize
effectively across domains. This dual approach – elaborated
in Section II-C – ensures robust gesture recognition perfor-
mance in diverse and dynamic environments.
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A. Domain-adaptive Preprocessing Pipeline (DAPP)

The domain-adaptive preprocessing pipeline (DAPP) is de-
signed to systematically address the inherent variability and
domain-specific artifacts present in mmWave CFR data. En-
vironmental factors such as spatial layout, device placement,
and dynamic movements introduce significant challenges that
can impair the generalization performance of gesture recog-
nition models when deployed across diverse environments.
DAPP helps mitigate these challenges by transforming raw
CFR data into a domain-invariant and gesture-specific repre-
sentation through a set of carefully designed processing steps
as follows.

Path Loss Compensation. Variations in the propagation
distance between the transmitter and receiver introduce sub-
stantial variability in CFR magnitudes due to path loss. With-
out correction, these variations embed domain-specific biases
into the data, hindering model generalization. Path loss PL(d)
is modeled as PL(d) ∝ 10n log10(d) + χσ , where d is the
propagation distance, n is the path loss exponent, and χσ ∼
N (0, σ2) represents the shadow fading component with σ as
the standard deviation. An attenuation factorAPL(d) = 1/dn

is derived to compensate for the path loss. Thus, the CFR
matrix Hm,n

r is scaled using Ccomp(f) = Hm,n
r · APL(d).

This compensation standardizes the CFR magnitudes across
different distances, allowing gesture-specific features to be
more prominent while attenuating domain-induced biases.

Frequency Normalization. Next, to ensure uniform scal-
ing, frequency normalization is applied to the compensated
CFR:

Cnorm(f) =
Ccomp(f)

∥Ccomp∥
, (2)

where ∥Ccomp∥ is the Frobenius norm [11] expressed as

∥Ccomp∥ =

√√√√ N∑
i=1

M∑
j=1

K∑
k=1

|Cijk|2. (3)

This normalization removes amplitude inconsistencies while
preserving the relative variations critical for distinguishing
different gestures.

Entropy-Guided Filtering. The stability of the CFR over
the sub-channels varies due to environmental factors like
multi-path and motion dynamics, affecting gesture recogni-
tion accuracy. Entropy is used to quantify this variability,
identifying stable sub-channels with consistent energy distri-
bution. For sub-channel k, entropy E(k) is computed as:

E(k) = −
M×N∑
i=1

pi log pi, pi =
|Cnorm k,i|2∑M×N

j=1 |Cnorm k,j |2
,

(4)
where pi is the normalized power of the i-th transmit-
receive antenna pair in the normalized CFR, Cnorm. Low
E(k) indicates stable subchannels likely to capture gesture-
relevant features, while high E(k) suggests noisy subchan-
nels. Weights w(k) = exp(−E(k)) are applied, producing
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Fig. 3: An example of a CFR sample before and after pre-
processing through the DAPP framework. The four plots
depict the CFR for received streams 1-4 and the first transmit
antenna.

the filtered CFR as Cfiltered = Cnorm · diag(w(k)). This em-
phasizes stable, gesture-relevant subchannels while suppress-
ing noise and enhancing the signal-to-noise ratio. Figure 3
presents examples of both the raw and preprocessed CFR for
the received streams 1-4 of the first transmit antenna.

B. Data Augmentation

To further enhance the generalization capabilities of the
gesture recognition model, data augmentation is integrated
into the preprocessing pipeline. This step simulates a variety
of environmental conditions and channel dynamics that the
learning model may encounter in real-world scenarios, thus
improving its robustness to domain shifts.

Noise Addition. To emulate additive white Gaussian noise
(AWGN) commonly present in wireless channels, Gaussian
noise is added to the filtered CFR matrix as follows:

Caug1 = Cfiltered +N, N ∼ CN (0, σ2), (5)

where N represents complex Gaussian noise with variance
σ2. This augmentation helps the model become resilient to
noise-induced fluctuations.

Scaling. Variations in transmit power or propagation dis-
tances are simulated by scaling the CFR magnitudes with a
random factor:

Caug2 = α · Cfiltered, α ∈ [αmin, αmax]. (6)

The scaling factor α is sampled from a uniform distribution
within the range [αmin, αmax], specifically α ∈ [0.7, 1.3] with
an interval of 0.1 for data augmentation. This range reflects
realistic variations in signal strength, accounting for path loss
effects due to varying distances between the transmitter and
the receiver in typical indoor environments. By simulating
such variations, this augmentation helps the model to gen-
eralize across different signal strengths without overfitting to
specific power levels.

Phase Perturbation. To replicate the phase distortions
caused by multipath effects due to the variations in the
environment dynamics, random phase shifts are applied:

Caug3(f) = Cfiltered(f) · ejϕ, ϕ ∼ U(−ϕmax, ϕmax), (7)
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where ϕ is a random phase shift sampled from a uniform dis-
tribution. This augmentation makes the model robust to phase
variations that occur due to the variation in the environment
dynamics.

By generating diverse and realistic training samples
through these augmentation techniques, the model is better
equipped to handle variations encountered in real-world de-
ployments.

C. Adaptive Temporal Embedding Network (ATEN)

Gesture recognition using mmWave CFR data is chal-
lenging due to the dynamic nature of temporal signals and
variations across domains, with traditional machine learning
models often failing to generalize across environments. To
address these issues, we propose the ATEN framework, which
integrates four main components: (i) feature encoding with
TCNs, (ii) task embedding, (iii) query-specific adaptation and
classification, and (iv) meta-learning-driven adaptation. The
first component – feature encoding with TCNs – extracts
gesture-relevant features from high-dimensional CFR data by
modeling both short and long-term temporal dependencies
through causal and dilated convolutions. This ensures causal-
ity, efficiently expands the receptive field, and minimizes
noise and domain-specific artifacts. The second component –
task embedding – generates a task-specific representation by
aggregating feature embeddings of data samples with their la-
bels, creating a global descriptor that reduces domain-specific
influences while bridging task-specific and global character-
istics. The third component – query-specific adaptation and
classification – refines query sample features by integrating
them with task embedding using a learnable transformation.
This process dynamically aligns query features with task-
specific attributes, enabling robust recognition even in un-
seen environments. The refined features are passed through
a task-adaptive classifier that adjusts decision boundaries
based on the task embedding. Finally, meta-learning-driven
adaptation optimizes the entire framework by training across
a distribution of tasks. This objective ensures the framework
generalizes effectively by capturing task-agnostic patterns
and adapting to task-specific details with minimal fine-tuning,
making it highly resilient to domain shifts.

1) Feature Encoding with TCNs: This section describes
the input representation and the architectural details of the
TCN used in our framework, as illustrated in Figure 4.

Input Representation. The raw CFR data from the
mmWave system is inherently multi-dimensional, comprising
information across time steps, subchannels, and multiple
streams. This data can be represented as a tensor X ∈
RT×K×Ns , where T is the number of CFR samples in the
temporal sequence, reflecting the temporal resolution of the
CFR signal, K is the number of subchannels, capturing the
frequency domain granularity, and Ns = M × N is the
total number of streams where M and N are the numbers
of transmit and receive antennas, respectively. To make the
data suitable for temporal processing using a TCN, the tensor
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Input
Input
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BatchNorm
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Global Average Pooling

Feature Vector
Skip C

onnection

Fig. 4: TCN architecture for gesture recognition, showcasing
dilated convolutions, deepwise separable convolutions, and
residual connections.

is reshaped into a 2D matrix, Xflat ∈ RT×(Nk·Ns). This
transformation preserves the temporal structure (T ) while
flattening the spatial and frequency dimensions, enabling the
TCN to process temporal dependencies while embedding the
combined spatial-frequency information in each time step.

TCN Architecture. The proposed TCN architecture, il-
lustrated in Figure 4, consists of five dilated 1-D convolu-
tional layers with dilation rates {0, 1, 2, 3, 4}, leveraging both
causal and dilated convolutions to efficiently capture short
and long-term temporal dependencies while preserving the
temporal order of the input data. Each convolutional layer
uses a kernel size of 3, balancing local feature extraction and
computational efficiency. Causal convolutions ensure that the
output at any time step depends only on the current and past
inputs, which is crucial for time-series modeling. Residual
connections are integrated to stabilize training and prevent
vanishing gradients, while deepwise separable convolutions
in the skip paths reduce parameter overhead. The temporal
feature map generated after the final layer undergoes global
average pooling to produce a compact feature vector for
downstream tasks. This design ensures effective temporal
modeling, computational efficiency, and robust gesture recog-
nition from multi-dimensional mmWave CFR.

Causal and Dilated Convolutions: The mathematical defi-
nition of causal convolutions is defined as:

Z(l)[t] =

q−1∑
i=0

W(l)[i] · Z(l−1)[t− i], (8)

where W(l)[i] represents the convolutional filters, and q is
the kernel size. To capture long-term dependencies, dilated
convolutions expand the receptive field by skipping input
values, determined by the dilation rate r. This operation is
expressed as:

Z(l)[t] =

q−1∑
i=0

W(l)[i] · Z(l−1)[t− r · i], (9)
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with r increasing exponentially across layers (r = 2l).
Together, causal and dilated convolutions enable the TCN
to capture both local and global temporal patterns while
maintaining the sequential integrity of the input.

Residual Connections: Residual connections, illustrated in
Figure 4, are incorporated to stabilize training and mitigate
vanishing gradient issues. Specifically, for a given layer l, the
output is computed as Z(l) = ReLU

(
Z(l) + Z(l−1)

)
. These

connections enable the network to learn perturbations to the
input rather than entirely new transformations, leading to
faster convergence and improved generalization.

Global Pooling for Feature Representation: After process-
ing through L layers, the TCN outputs a temporal feature
map, denoted by Z(L), where Z(L) ∈ RT×p represents a
matrix with T CFR time step samples and p as the feature
dimension per time step. To generate a compact represen-
tation for each input sample xi, global average pooling is
applied across the temporal dimension, resulting in a feature
vector zi = GlobalAveragePooling(Z(L)), where zi ∈ Rp
represents the final feature vector, encapsulating the temporal,
spatial, and frequency characteristics of the input sample xi.
This feature vector zi is then utilized for downstream tasks
such as task embedding and classification.

2) Task Embedding: The concept of task embedding
serves as the backbone of meta-learning by distilling the
information from the support set into a compact represen-
tation. This representation encapsulates the distinctive char-
acteristics of a given task while preserving features that are
invariant across domains. By bridging task-specific nuances
with domain-independent traits, task embeddings lay the
foundation for robust model generalization across diverse
tasks and environments.

Let the support set for a task T be defined as Si =
{(xi, yi)}ni=1, where xi and yi denote the input and cor-
responding label of the i-th sample. The task embedding
zT ∈ Rq is designed to aggregate this information, producing
a high-level representation of the task. Formally, the task
embedding is computed as:

zT = gψ ({zi}ni=1, {yi}ni=1) , (10)

where gψ is a neural network parameterized by ψ, and zi
represents the latent embedding of the i-th input xi, learned
through the TCN feature extractor as presented in 4. The
function gψ maps the support set to a single embedding vector
zT that summarizes the task efficiently. A straightforward yet
effective mechanism for computing zT involves the following
aggregation strategy:

zT =
1

n

n∑
i=1

ρ (zi, yi) , (11)

where ρ is a task-specific embedding function that combines
the latent representation zi of the input with its label yi.
This combination can be implemented through simple oper-
ations such as concatenation or element-wise multiplication,
ensuring that label information is seamlessly integrated into
the task embedding. The neural network gψ , is designed to

refine the aggregated embeddings by learning the relationship
between the features unique to a specific task and broader
patterns or characteristics that are consistent across multiple
tasks. By capturing the essence of the task, the embedding
zT not only facilitates rapid adaptation to new tasks but also
ensures that the model remains resilient to domain shifts.

This approach for task embedding offers multiple advan-
tages. First, it achieves a balance between task specificity and
domain generality by encoding diverse task attributes without
overfitting to any single task. Second, the aggregation mech-
anism is computationally efficient, making it scalable to large
support sets. Finally, the inclusion of labels in the embedding
process ensures that the representation aligns closely with the
task objective, enhancing its discriminative power.

3) Query-Specific Adaptation and Classification: The
query-specific adaptation mechanism tailors the representa-
tion of each query sample to the characteristics of the given
task, leveraging the task embedding for improved alignment
with task-specific nuances. This adaptation ensures that the
model effectively incorporates contextual information from
the support set when processing each query sample.

Given a query sample xi ∈ Qi, where xi is the input query
sample andQi denotes the set of all query samples for a task,
its feature embedding zi ∈ Rp is adjusted using the task
embedding zT ∈ Rq . Here, p represents the dimension of
the query embedding, corresponding to the number of fea-
tures extracted for each query sample, while q represents the
dimension of the task embedding, capturing the compressed
information extracted from the task-specific support set. The
adjusted or adapted representation zadapted

i ∈ Rp is computed
as zadapted

i = η (zi, zT ), where η denotes an adaptation func-
tion. A commonly used adaptation mechanism involves an
affine transformation formulated as zadapted

i =Wzi+V zT +b,
where W ∈ Rp×p is a learnable matrix that transforms the
query embedding zi, maintaining its dimensionality p. The
matrix V ∈ Rq×p maps the task embedding zT from its q-
dimensional space into the p-dimensional query embedding
space, while b ∈ Rp is a learnable bias vector that ensures
flexibility in the transformation. This affine transformation
combines task-level and query-specific features, enabling
zadapted
i to reflect both global and task-specific contexts. Once

adapted, the embeddings are passed to a classifier hθ, where
hθ is a neural network parameterized by θ. The classifier
operates on the adapted embedding zadapted

i to produce gesture
label predictions. The predicted label ŷi for the query xi is
computed as

ŷi = argmax
c∈Y

hθ

(
zadapted
i , c

)
, (12)

where Y is the set of all possible gesture labels, and hθ
outputs a probabilistic distribution over the labels in Y . The
final prediction is determined by the class c with the highest
probability. The classifier in our framework consists of a
single fully connected layer that maps the adapted embed-
dings zadapted

i to the number of gesture classes |Y|. This is
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Fig. 5: m3MIMO ISAC system for data collection in MAGIC.

followed by a softmax activation function, which outputs a
probabilistic distribution over the gesture labels.

4) Meta-learning-driven adaptation: The meta-learning
adaptation serves as the cornerstone for training models that
generalize across diverse tasks. By leveraging task-specific
losses, the model is iteratively refined to enhance its ability to
adapt to new tasks while retaining generalization capabilities.

For each task Ti, the query loss measures the discrepancy
between the model’s predictions and the true labels in the
query set Qi where the task-specific loss is defined by

Ltask(Ti) =
1

m

∑
(xi,yi)∈Qi

LCE

(
hθ

(
z

adapted
i

)
, yi

)
, (13)

where LCE denotes the cross-entropy loss function, hθ is the
classifier parameterized by θ, and m represents the number
of query samples in the task. The use of cross-entropy loss
ensures a probabilistic interpretation of the model’s output,
aligning the predictions hθ(z

adapted
i ) with the ground truth

labels yi. The overall meta-loss aggregates the task-specific
losses across all tasks in a meta-batch as

Lmeta =
1

N

N∑
i=1

Ltask(Ti), (14)

where N represents the number of tasks in the meta-batch.
This aggregation ensures that the model learns a shared repre-
sentation that generalizes across tasks, balancing task-specific
performance and domain invariance. To optimize the meta-
loss, the parameters (ϕ, ψ, θ) of the feature extractor, task
embedding module, and classifier are updated using gradient
descent, ϕ, ψ, θ ← ϕ, ψ, θ − η∇(ϕ,ψ,θ)Lmeta, where η is the
learning rate. This update step enables the model to iteratively
refine its parameters by minimizing the meta-loss, ensuring
that it captures both global patterns and task-specific nuances.
The meta-learning adaptation plays a pivotal role in enabling
the model to adapt to new tasks efficiently.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

We evaluate MAGIC through extensive experimentation us-
ing the m3MIMO [12] testbed—a fully digital 8×8 mmWave
MIMO system. The testbed features two Zynq Ultra-Scale+

Thumbs up Thumbs down Victory Okay Pointing

Pinch FistFingers crossedTap fingers Half open palm

Fig. 6: The different micro-gestures in our evaluation: thumbs
up, thumbs down, victory, okay, pointing, pinch, tap two
fingers, fingers crossed, fist, half open palm.

Experimental Setup Conference room

Study room

TXRX

Lab

Fig. 7: Experimental setup and sample frames captured in
three environments with synchronized video streams for
ground truth.

RFSoC Software Defined Radios (SDRs) equipped with Pi-
radio transceivers, functioning as beamformer and beam-
formee. Each SDR supports up to 8 × 8 MIMO, with eight
independent transmitter and receiver RF chains and antennas.
An example of the experimental setup is illustrated in Fig-
ure 5. Operating in the 57–64 GHz mmWave band, m3MIMO
supports up to 1 GHz of bandwidth and functions in a fully
digital mode, enabling 8 × 8 MIMO with OFDM transmis-
sions. While m3MIMO is capable of both single-user multi-
input multi-output (SU-MIMO) and multi-user multi-input
multi-output (MU-MIMO) modes, MAGIC leverages only the
SU-MIMO mode for extracting the CFR, which serves as the
key sensing primitive in our system. Further technical details
of the testbed are available in [12].

A. Data Collection Campaigns

We conducted data collection campaigns in three different
environments – a Conference room, a Study room, and a
Lab space with two different subjects performing ten dif-
ferent micro-gestures. The considered gestures are: thumbs
up, thumbs down, victory, okay, pointing, pinch, tap fingers,
fingers crossed, fist, half open palm as depicted in Figure 6.
We chose this set of micro-gestures as they represent fine,
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Fig. 8: Performance comparison of MAGIC with with state-
of-the-art (SOTA) approaches.

nuanced movements that are common in everyday commu-
nication and interactions. These gestures are often subtle
and exhibit minimal variation in physical movement, making
them particularly challenging for gesture recognition sys-
tems. This selection is motivated by the need to evaluate the
robustness of our system in recognizing gestures that require
high sensitivity to spatial and temporal variations. Unlike
broader, more distinct gestures, micro-gestures like “fist” or
“half open palm” demand advanced processing capabilities to
accurately identify subtle differences in motion patterns and
orientations.

In each of the environments, we perform data collection by
placing the transmitter and the receiver at a distance of 2 m
from each other while the subjects perform different gestures
facing toward the beamformer as presented in Figure 7. The
transmitter broadcasts the NDP at a rate of 166 packets/s
while we collect the estimated CFR at the receiver during
the execution of different gestures by different subjects. We
synchronously record the video stream from a fixed camera
location to create the vision-based ground truth. Every subject
performs all the different gestures 50 times in each of the en-
vironments while each of the gestures lasts for 3 seconds. The
CFR corresponding to each gesture is captured and labeled
synchronously to create the training dataset. The captured
dataset is then processed and fed to the learning model as
presented in Section II-C.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MAGIC
by comparing it with two state-of-the-art mmWave radar-
based gesture recognition approaches – RadarNet, and DI-
Gesture-Lite. We also analyze the performance variations of
MAGIC with different subchannel resolutions and variations
in subject. Next, we perform a detailed ablation study to
understand the impact of TCN in overall performances and
the impact of DAPP preprocessing pipeline and augmentation
in generalization. Finally, we compare the generalization
performance of the proposed learning approach ATEN with
two other SOTA few-shot learning approaches – ReWiS and
FREL.

A. MAGIC Vs SOTA Approaches

Figure 8 presents the performance comparison of MAGIC
with other SOTA approaches. The results demonstrate the
clear superiority of MAGIC compared to SOTA models –

RadarNet and DI-Gesture-Lite, across various environments.
In the Lab setting, MAGIC achieves an accuracy of 98.89%,
significantly outperforming the SOTA models by margins of
27.7% and 17.2%, respectively. The trend is consistent in the
Study and Conference room, where MAGIC achieves over
98.8% accuracy, with an average improvement of approxi-
mately 24.97% over other SOTA models. Notably, MAGIC’s
performance remains remarkably stable across different envi-
ronments, with a variation of less than 0.6% accuracy among
the Lab, Conference, and Study environments. This stabil-
ity contrasts sharply with the SOTA models, which exhibit
significantly larger performance fluctuations, reflecting their
susceptibility to environmental changes. The results empha-
size MAGIC’s robustness and adaptability, showcasing its
ability to maintain high accuracy regardless of the operating
conditions.
B. MAGIC performance with different subchannel resolution

We evaluate the performance of MAGIC as a function
of different subchannel resolutions by comparing it with
SOTA approaches as presented in Figure 9. The results show
that the MAGIC consistently outperforms the state-of-the-
art approaches, DI-Gesture-Lite and RadarNet, across all
subchannel resolutions and environments. Notably, MAGIC
demonstrates remarkable robustness as the number of sub-
channels decreases, maintaining high accuracy levels even
at lower resolutions. For instance, in the Lab environment,
while DI-Gesture-Lite and RadarNet experience significant
drops in accuracy – 59.43% and 66.03%, respectively, at 128
subchannels, MAGIC sustains an accuracy of 91.73%. This
trend is similarly observed in the Conference and Study room
scenarios, where MAGIC achieves approximately 89.73% and
90.73% accuracy at 128 subchannels, respectively. In con-
trast, the competing models, DI-Gesture-Lite and RadarNet,
show a more pronounced sensitivity to the reduction in sub-
channel resolution, suggesting that their feature extraction
or adaptation mechanisms are less robust to such changes.
Additionally, MAGIC’s accuracy remains above 90% in all
scenarios when the subchannel resolution is 256 or higher,
reflecting its reliability in high-resolution settings.

C. MAGIC performance with different subjects

Figure 10a presents the performance of MAGIC with dif-
ferent subjects in different environments. MAGIC demon-
strates remarkable consistency and robustness across differ-
ent subjects in all environments, with minimal variation in
accuracy between subjects. In the Lab environment, while
both subjects achieve near-perfect performance, the slight
improvement for Sub-2 (99.19%) over Sub-1 (98.89%) might
indicate marginal differences in gesture execution clarity or
environmental factors. Interestingly, the Study room shows
the highest accuracy for Sub-1 (99.47%) across all environ-
ments, suggesting that Sub-1’s gestures in this environment
were exceptionally well captured, possibly due to favorable
environmental dynamics or subject performance. Overall,
the small differences in performance indicate that MAGIC
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Fig. 9: Comparative analysis of MAGIC with SOTA approaches as a function of number of subchannels

Lab Conf.
room

Study
room

90

95

100

A
cc

ur
ac

y(
%

) Sub-1 Sub-2

(a) MAGIC with different sub-
jects

Lab Conf.
room

Study
room

80

90

100
A

cc
ur

ac
y(

%
) TCN

VGG-16
VGG-8

(b) MAGIC performance with
TCN vs VGG variants

Fig. 10: MAGIC performance with (a) different subjects and
(b) impact of TCN vs VGG-8 and VGG-16.

effectively generalizes across subjects while maintaining con-
sistently high accuracy, underscoring its robustness and suit-
ability for real-world multi-user applications.

D. Evaluating the role of TCN in MAGIC

We evaluate the impact of adopting the TCN architecture
over traditional convolutional neural network (CNN) models,
such as VGG-8 and VGG-16, within MAGIC. The results
are presented in Figure 10b. The results reveal interesting
insights into MAGIC’s performance with TCN compared to
VGG-8 and VGG-16 across environments. TCN consistently
outperforms both VGG variants, highlighting its ability to
better capture temporal dependencies in gesture recognition
tasks. While VGG-16 slightly outperforms VGG-8 due to
its deeper architecture, the performance gap between TCN
and VGG-16 suggests that increasing network depth alone
is insufficient for these tasks. The consistent performance
advantage of TCN across all environments, demonstrates its
robustness and suitability for dynamic, real-world scenarios.
These findings underscore the importance of leveraging archi-
tectures like TCN, which are better aligned with the temporal
nature of gesture data, over purely depth-focused designs like
VGG.

E. Impact of the DAPP Preprocess Pipeline and Data Aug-
mentation in Generalization

We now highlight the impact of the proposed data prepro-
cessing timeline, DAPP, on domain generalization, as illus-
trated in Figure 11a. The results show that DAPP significantly
enhances cross-environment accuracy, with notable improve-
ments over models without preprocessing. For example, when
trained with the data from the Lab environment and tested
with the data from the Conference room, accuracy increases
from 7.21% without DAPP to 22.34% with DAPP, and in the
Study room, it improves from 6.68% to 23.17%. These im-
provements are consistent across all scenarios. Interestingly,
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Fig. 11: Impact of preprocess pipeline – DAPP and data
augmentation in generalization

DAPP is particularly effective in handling challenging do-
main shifts, as seen in the Conference room to Lab scenario,
where the improvement is more than four times the baseline
– from 4.23% to 18.28%. This shows that DAPP excels at
extracting robust features, enabling the model to better adapt
to unseen domains.

As depicted in Figure 11, data augmentation provides
even greater improvements, amplifying the effects of DAPP.
When trained in the Lab and tested in the Conference room,
accuracy increases from 22.34% (with only DAPP) to 42.56%
with combined DAPP and augmentation, while testing in the
Study room shows a similar boost from 23.17% to 46.32%.
These results demonstrate augmentation’s ability to enhance
generalization across diverse environments by introducing
variability during training. The consistent performance gains
across all settings suggest that augmentation addresses do-
main shifts more comprehensively than preprocessing alone.

DAPP and data augmentation complement each other,
with DAPP providing foundational improvements and aug-
mentation introducing the necessary variability to handle
unseen conditions. For example, in the Lab-to-Conference
scenario, the combined improvements take accuracy from a
mere 7.21% (without DAPP or augmentation) to 42.56% by
applying both DAPP and augmentation strategies. This com-
bined approach proves critical for handling domain shifts,
ensuring robust generalization in gesture recognition tasks
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Fig. 12: Environment generalization performance of ATEN – the domain generalization algorithm of MAGIC
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Fig. 13: Subject generalization performance of ATEN – the
generalization algorithm of MAGIC

across diverse environments.

F. ATEN in Generalizing Environments

We present the generalization performance of ATEN –
the domain generalization algorithm of MAGIC in Figure 12.
ATEN demonstrates exceptional generalization performance
across environments, significantly outperforming the SOTA
wireless sensing generalization algorithm – ReWiS and
FREL. For instance, when trained in the Lab and tested in
the Conference room, ATEN achieves 99.21% accuracy with
only 1000 new samples from new environment which is worth
of only 6 Seconds of data collection. On the contrary, ReWiS
and FREL achieve only 64.46% and 88.68% repectively,
while ATEN shows improvements of 54% and 12%, respec-
tively. A similar trend is observed when trained in the Study
room and tested in the Lab, where ATEN achieves 97.28%,
outperforming ReWiS (58.47%) and FREL (84.24%) by 66%
and 15%, respectively. On average, ATEN improves accuracy
by approximately 60% over ReWiS and 14% over FREL
across all environments. These results highlight ATEN’s abil-
ity to handle domain shifts effectively, achieving consistently
high performance where other methods falter. ATEN’s abil-
ity to achieve such consistent improvements underscores its
robustness and makes it a superior choice for cross-domain
wireless sensing.

G. ATEN in Generalizing Subjects

As presented in Figure 13, ATEN demonstrates outstand-
ing cross-subject generalization performance, significantly
outperforming ReWiS and FREL. For instance, when trained
with Sub-1 and tested on Sub-2, ATEN achieves 99.21%
accuracy in the Lab, compared to 64.46% for ReWiS and
88.68% for FREL. On average, ATEN improves accuracy by
over 55% compared to ReWiS and approximately by 10%
compared to FREL, showcasing its effectiveness in handling
subject variability. These findings confirm ATEN’s robustness
and adaptability for cross-subject gesture recognition, consis-
tently maintaining high performance across diverse scenarios.

V. RELATED WORK
Gesture recognition has become a critical area of research

due to its applications in Human-Computer Interaction (HCI),
healthcare, and security. To address the limitations of tra-
ditional vision-based systems, researchers have explored al-
ternative sensing methods such as Wi-Fi signals [13]–[15]
and mmWave signals [16], [17]. For a detailed overview,
readers can refer to [18] and [9], which provide insights
into performance metrics, applications, and machine learning
techniques used with mmWave radar.

Significant progress has been made in mmWave gesture
recognition. For instance, Yu et al. [7] developed a mmWave
MIMO radar-based gesture recognition system using CNN
and LSTM, achieving over 90% accuracy for 12 gestures.
Liu et al. [19] proposed mHomeGesUser, a lightweight CNN-
based framework for real-time arm gesture recognition in
smart home scenarios. Identification has also emerged as an
important factor in mmWave gesture systems [8], [20]. Xu
et al. [8] introduced GesturePrint, combining attention-based
mechanisms for gesture recognition and user identification,
achieving over 98% accuracy for 15 gestures and identifying
17 participants. Liu et al. [21] presented M-Gesture, a person-
independent, real-time gesture recognition system. Address-
ing data scarcity, Yan et al. [22] proposed mmGesture, a semi-
supervised system leveraging data augmentation to minimize
labeling costs. Various hardware architectures have also been
explored in recent works [23], [24]. Mao et al. [23] introduced
a multiple Frequency Modulation Continuous Wave (FMCW)
radar-based system using LSTM, achieving 98% accuracy
for eight gestures. Yu et al. [24] employed continuous wave
(CW) radar for detecting valid frames in real-time gesture
recognition. For generalization across environments, Liu et
al. [25] proposed mTransSee, a transfer learning framework
that adapts to new environments while preserving recognition
accuracy. Compact and efficient frameworks have been de-
signed for constrained devices, such as RadarNet [26], which
combines CNN and LSTM for computational efficiency, and
Gesture-mmWAVE [27], a system using multilevel feature fu-
sion and transformers for embedded deployment. DI-Gesture
[28] and its variant DI-Gesture-Lite incorporate Dynamic
Range Angle Images (DRAI) and basic data augmentation to
enhance domain independence and robustness. RadarNet [26]
processes range-Doppler maps for spatial-temporal motion
details, summarizing radar data into compact representations
for practical applications.

While these approaches achieve impressive results, they
rely on specialized radar hardware, increasing system com-
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plexity and cost. In contrast, MAGIC eliminates the need for
dedicated radars by leveraging mmWave MIMO CSI, inte-
grating a domain-adaptive preprocessing pipeline (DAPP),
robust data augmentation, and the ATEN meta-learning
framework. This enables MAGIC to achieve high accuracy,
robust generalization, and adaptability across diverse envi-
ronments and subjects, establishing itself as a practical and
cost-effective solution for real-world gesture recognition.

VI. CONCLUSION

In this paper, we introduced MAGIC, a novel gesture recog-
nition framework leveraging mmWave MIMO CSI, elimi-
nating the reliance on dedicated radar hardware and sig-
nificantly reducing system complexity and data overhead.
By incorporating the domain-adaptive preprocessing pipeline
(DAPP), robust data augmentation, and the ATEN meta-
learning framework, MAGIC achieves exceptional adaptabil-
ity, maintaining up to 99% accuracy and demonstrating
strong generalization across diverse environments and sub-
jects. Compared to SOTA wireless sensing generalization
approaches like ReWiS and FREL, MAGIC improves accu-
racy by 60% and 14% on average, respectively, highlighting
its robustness under domain shifts and subject variability.
Furthermore, its ability to operate with reduced subchannel
resolutions and minimal training data emphasizes its practi-
cality for resource-constrained scenarios. These results show
that MAGIC is a scalable, efficient, and robust solution for
real-world gesture recognition applications, setting a new
benchmark for mmWave-based sensing systems.
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