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DECOR: Multi-Modal Decentralized Cluster-based
Energy Efficient Covert Routing in HetNets

Khandaker Foysal Haque , Justin H. Kong , Terrence J. Moore , Kevin Chan , Francesco Restuccia , and
Fikadu T. Dagefu

Abstract—State-of-the-art covert routing in heterogeneous net-
work (HetNet) focuses on balancing covertness and through-
put, but often overlooks explicit energy optimization. While
covert communication inherently limits transmit power, meet-
ing throughput demands without coordinated design can still
lead to high energy consumption. In contrast, our approach
jointly considers covertness, throughput, and energy efficiency,
addressing all three objectives simultaneously. To this end, we
propose DECOR, a Decentralized Energy-efficient COvert Routing
framework that jointly optimizes covertness, throughput, and
energy efficiency. Unlike traditional methods that use a single
wireless technology, DECOR leverages the diversity of available
wireless communication technologies in HetNet to enable si-
multaneous multi-modal routing. The core idea behind DECOR
is that optimal simultaneous utilization of multiple modalities
improves throughput and overall energy efficiency. It minimizes
the end-to-end energy consumption while satisfying stringent
constraints on throughput and covertness through two core steps:
(1) link-level optimization using sequential least squares pro-
gramming (SLSQP), and (2) network-level optimization through
a custom cluster-based routing strategy. DECOR introduces a
novel clustering-based strategy that aggregates intra-cluster link
information and delegates routing decisions to cluster heads,
significantly reducing control overhead and enabling scalable,
energy-efficient covert communication. Extensive numerical anal-
ysis demonstrates that DECOR significantly outperforms existing
approaches in terms of energy-efficiency and data overhead.

I. INTRODUCTION

COVERT wireless communication techniques that aim
to conceal wireless signals from potential adversaries

have garnered significant attention in recent years [1], [2].
Recent advancements have explored various approaches to
covert communication in heterogeneous network (HetNet),
including point-to-point [3] and multi-hop scenarios [4]. Re-
cent works have explored covert communication in various
settings, including routing optimization in HetNets [5], intelli-
gent reflecting surface (IRS)- and NOMA-assisted designs [6],
unmanned aerial vehicle (UAV)-based covert links [7], relay
selection in IoT networks [8], and intelligent signal design
in cognitive radio environments [9]. These efforts highlight
diverse strategies for improving covert performance under
specific network configurations and objectives.

Despite recent progress, existing approaches fall short of
meeting the stringent quality of service (QoS) demands of
next-generation networks. Current methods often suffer from:
(i) low throughput due to limited bandwidth and conservative
transmit power [4], [10]; (ii) increased energy consumption
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when covertness is relaxed to boost performance [11]–[13];
and (iii) lack of integrated strategies to ensure communication
covertness under these constraints [14], [15]. Some recent
work, such as Aggarwal et al. [3], has focused on improving
covertness while reducing energy usage by jointly exploiting
two communication modalities. However, their approach is
limited to single-hop scenarios and does not consider decen-
tralized, scalable solutions for multi-hop networks. This gap
highlights the need for covert communication strategies that
jointly optimize energy, throughput, and covertness across the
network.

To address the challenge of balancing the conflicting re-
quirements of high throughput, strict covertness, and low en-
ergy consumption, we propose a novel Decentralized Energy-
efficient COvert Routing (DECOR) framework. It departs from
traditional methods by leveraging multiple modalities (i.e., dif-
ferent wireless communication technologies) simultaneously
in a multi-hop HetNet, thereby enhancing both end-to-end
throughput and energy efficiency. The core idea behind DECOR
is that, as the throughput of any communication modality
depends on its instantaneous channel conditions and exhibits
a non-linear relationship with transmit power, by optimally
utilizing multiple modalities simultaneously, DECOR achieves
higher throughput with comparatively lower energy consump-
tion. This intuition is substantiated through a preliminary
single-hop analysis, summarized Section I-A [16].
DECOR builds upon our previous work, DEER [16], which

introduced decentralized link-level optimization for simultane-
ous multi-modal covert routing. Although DEER incorporated
a network-level strategy via decentralized neighbor discovery
and local route formation, it lacked structured coordination,
resulting in considerable data overhead during route establish-
ment. In contrast, DECOR introduces a novel clustering-based
network-level optimization that partitions the network into
constrained clusters and facilitates coordinated information
exchange among them, thereby reducing control overhead and
enabling scalable, energy-efficient route formation. Further-
more, DECOR implements a streamlined data flow architecture
tailored to support the clustering strategy, ensuring energy-
efficient operation while maintaining covertness in large-scale
deployments.

A. Preliminary Analysis and DECOR Overview

The preliminary analysis compares single-modal and si-
multaneous multi-modal transmission in a single-hop scenario
involving three communication modalities at 400 MHz, 900
MHz, and 2.4 GHz, each with a 3 MHz bandwidth. The goal
is to meet 20 Mbps throughput requirement under strict covert-
ness constraints, reflecting a practical HetNet environment. As
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Fig. 1: Transmit power consumption of single modal vs
simultaneous multi-modal transmissions with user-required
throughput and covertness level for a single hop scenario.

shown in Figure 1, simultaneous use of two modalities signifi-
cantly improves energy efficiency—by up to 7.4×—compared
to single-modal transmission. This improvement comes from
splitting the throughput across modalities based on their chan-
nel conditions, enabling each to operate at a lower trans-
mit power. In contrast, to achieve the required throughput,
single-modal strategies must allocate more power to a single
frequency, especially under poor channel conditions, leading
to higher energy consumption. These results underscore the
advantage of simultaneous multi-modal communication in
achieving covert, high-throughput transmission with lower
energy cost.

Building on the above intuition, DECOR adopts a two-phase
optimization strategy: (i) link-level optimization, where each
node selects the best neighbor-modality pair that minimizes
transmit power while satisfying throughput and covertness
constraints, and (ii) network-level optimization, which em-
ploys a clustering-based routing strategy. The key motiva-
tion for clustering is to reduce the control overhead and
routing complexity that arise in fully decentralized multi-hop
networks. By aggregating intra-cluster link information and
delegating route computation to cluster heads, the approach
improves scalability and coordination efficiency without com-
promising the decentralized nature of the system.

B. Related Works

Existing literature on covert communication can be catego-
rized along several emerging directions, including jamming-
assisted covert strategies, IRS-enabled covert communication,
learning based covert strategies and diverse formulations of
covertness.

Recent works have begun exploring learning-based tech-
niques to enhance covert communication performance under
complex and dynamic wireless conditions. Li et al. devel-
oped intelligent covert transmission strategies for cooperative
cognitive radio networks, including parasitic and jammer-
aided covert transmission, which leverage improper Gaus-
sian signaling and generative adversarial networks (GANs)
to manage covert rate and leakage [9]. Kong et al. proposed
covert routing algorithms for HetNets that use reinforcement
learning to maximize detection error probability, throughput,
or latency under decentralized conditions [5]. Similarly, Duan
proposed a deep learning-based covert communication method
for internet of things (IoT) networks, utilizing deep complex
neural networks within an autoencoder framework to jointly

perform modulation, synchronization, and demodulation [17].
Weiguo et al. also proposed a deep learning-based covert
communication scheme that adaptively generates cover signals
by leveraging environmental high-power transmissions [18].

Several works have explored jamming and IRS-assisted
techniques to improve covert communication performance.
Xie. et al. introduced a decentralized incentive-routing mech-
anism that leverages cooperative jamming to suppress eaves-
dropping during multi-hop transmission [19]. Feng et al.
developed a covert communication framework for large-scale
D2D networks that leverages friendly jamming and stochastic
geometry to enhance security [20]. Chen et al. proposed a
covert communication framework employing a multi-antenna
UAV jammer utilizing zero-forcing to minimize interference
at the legitimate receiver [21]. Kong et al. investigated
covert communication in IRS-assisted networks incorporating
a friendly jammer [22]. They proposed a novel technique
that jointly optimizes the transmission probability, transmit
power at the transmitter, IRS reflection matrix, and jamming
power to enhance covert communication performance. Lv
et al. studied IRS-assisted NOMA systems and proposed a
joint optimization of transmit power and IRS beamforming to
enhance covertness [10].

Several works have explored foundational techniques in
covert communication, particularly for single-hop settings. For
instance, Aggarwal et al. [3] proposed a joint optimization
framework that tunes detection thresholds and transmit power
in multi-modal wireless systems, improving both energy effi-
ciency and covertness. However, this work focuses on point-
to-point communication without addressing the complexities
of multi-hop networks. More recent studies have progressed
toward multi-hop covert communication in heterogeneous and
dynamic environments. Kong et al. [4] designed algorithms
that optimize routing decisions by jointly maximizing detec-
tion error probability (DEP), improving throughput, and reduc-
ing latency. Other works have explored multi-hop strategies:
Gao et al. [8] proposed covert relay selection mechanisms for
IoT systems based on superior-link selection, showing that
selecting relays with higher minimum link quality improves
covertness.

Finally, several works– though not directly addressing
covert communication– have leveraged clustering to enhance
energy efficiency and scalability in wireless sensor networks.
Giri et al. [23] proposed a fuzzy clustering algorithm with
unequal clusters and energy-aware cluster head selection,
improving network lifetime via particle swarm optimization.
Tumula et al. [24] designed a mobility- and energy-aware
self-configuration clustering scheme to reduce congestion and
boost delivery rates. Other studies employed fuzzy logic [25],
[26] or bio-inspired methods [27] to balance intra- and
inter-cluster loads. Motivated by these insights, we adopt a
constrained agglomerative clustering approach that considers
local node density and link quality while bounding control
overhead—making it suitable for decentralized, covert multi-
hop networks.

Despite these advancements, prior studies have largely
focused on single-modal communication and mostly limited
to one- or two-hop scenarios with relay nodes, leaving the
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potential of simultaneous multi-modal multi-hop routing un-
derexplored. This gap motivates our proposed approach.

C. Summary of Contributions
The key contributions of DECOR are summarized below:

• We propose a decentralized link-level optimization where
each node jointly selects the optimal modality pair and trans-
mit powers at each relay node to minimize hop-wise energy
under covertness and throughput constraints.
• We introduce a constrained clustering mechanism that en-
ables each cluster to aggregate its link-state information. This
allows cluster heads to coordinate routing decisions across
clusters, significantly reducing data overhead and improving
the scalability and energy efficiency of covert communication.
• We develop a structured data flow architecture that orches-
trates clustering, route computation, and periodic reconfigura-
tion, enabling scalable coordination with minimal communi-
cation overhead.
• We demonstrate through extensive numerical analysis that
DECOR achieves up to 32× lower end-to-end energy consump-
tion and up to 12× reduction in data overhead compared to
baseline routing schemes, while delivering up to 9× energy
efficiency gains over the prior state-of-the-art DEER frame-
work [16].

Throughout this paper, we use the terms transmit power
and energy consumption interchangeably in the context of our
optimization goal. While transmit power is an instantaneous
measure and energy consumption reflects cumulative usage,
minimizing transmit power per hop and reducing control
overhead together lead to lower end-to-end energy use, thereby
achieving energy efficiency.

The rest of the paper is organized as follows. Section II
outlines the network model and formulates the optimiza-
tion problem. Section III introduces the proposed DECOR
framework with its core components. Section V reports the
performance evaluation, and Section VI concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

We consider a HetNet comprising a source node (Alice), a
destination node (Bob), multiple relay nodes, and an adversary
(Willie). We consider a network of N nodes, where each
node is equipped with M distinct communication modalities
(i.e., wireless technologies), characterized by unique operating
frequencies and channel properties. This diversity enables the
network to adaptively utilize the most suitable modalities
for each hop for efficient and covert data transmission. The
adversary, Willie, is equipped with a wideband radiometer
capable of simultaneously monitoring the frequency bands of
all M modalities. Willie’s objective is to detect the existence
of communication within the network, posing a significant
challenge to maintaining covertness.

Our goal is to jointly establish a route from Alice to
Bob and allocate resources (i.e., choose optimal modalities
for each hop) that minimizes end-to-end energy consumption
while satisfying requirements on covertness and throughput.

The proposed framework – DECOR leverages the diversity of
available modalities. Each hop in a route adaptively selects
the best two modalities from the M available options to
minimize energy consumption while adhering to the covertness
and throughput constraints. Importantly, both communication
modalities used in a hop must come from the same node,
meaning they are not split across different nodes for the same
hop.

Let Ψ denote the set of all possible routes from Alice to
Bob. Each route ψ ∈ Ψ is defined as ψ = (h1, . . . , hNψ ),
where hi = (Thi , Rhi) represents the i-th hop consisting of a
transmitter Thi and a receiver Rhi . The number of hops in a
route ψ is given by Nψ . At each hop h, the framework selects
two modalities, denoted as m

(a)
h and m

(b)
h , that minimize

the per-hop combined transmit power while ensuring the
covertness and throughput constraints are satisfied.

We adopt a block-fading channel model where the channel
remains constant over a single transmission slot and varies
independently across slots. Each slot consists of a block of
l = 1, 2, . . . , L channel uses, during which the wireless chan-
nels from the transmitter to both the legitimate receiver and
Willie remain static. This assumption ensures that Willie can
perform detection within a single slot while each transmission
remains statistically independent from others. For a given
selected set of modalities mh = {m(a)

h ,m
(b)
h } for hop h, the

received signals at the receiver Rh and the adversary W are
respectively written as

y
(m)
Th,Rh

[l] =

√
P

(m)
h g

(m)
Th,Rh

xh[l] + n
(m)
Th,Rh

[l], (1)

y
(m)
Th,W

[l] =

√
P

(m)
h g

(m)
Th,W

xh[l] + n
(m)
Th,W

[l], (2)

for m ∈ mh, where xh[l] ∼ C(0, 1) is the transmitted
data symbol. For each selected modality m ∈ mh, P (m)

h

denotes the transmit power assigned to modality m at hop
h. The coefficients g(m)

Th,Rh
and g

(m)
Th,W

represent the channel
gains from Th to Rh and W , respectively, for the modality
m ∈ mh. The noise terms n

(m)
Th,Rh

[l] and n
(m)
Th,W

[l] are
modeled as additive white Gaussian noise (AWGN) with
distributions CN (0,Ω(m)N0,Rh) and CN (0,Ω(m)N0,W ), re-
spectively, where Ω(m) denotes the bandwidth of modality
m ∈ mh. Additionally, N0,Rh and N0,W indicate the spectral
noise densities at Rh and W , respectively.

The throughput for a single-hop link h for modality m ∈ mh

can be calculated as:

U
(m)
h = Ω(m) log2

1 +
P

(m)
h

∣∣∣g(m)
Th,Rh

∣∣∣2
Ω(m)N0,Rh

 . (3)

For each hop, the total throughput is the sum of the through-
puts for the selected modalities m(a)

h and m(b)
h , expressed as:

Uh = U
(m

(a)
h )

h + U
(m

(b)
h )

h . (4)

Note that the end-to-end throughput of a route ψ is critically
influenced by the hop with the lowest throughput, which acts
as a bottleneck. Consequently, the end-to-end throughput of
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entire route ψ can be defined by the minimum of Uh for all
h ∈ ψ as

U(ψ) = min
h∈ψ

Uh. (5)

B. Detection at Willie

We assume that Willie has knowledge of the channel co-
efficients g(m)

Th,Rh
, transmit power P (m)

h , and bandwidth Ω(m)

for all modalities m ∈ mh and hops h ∈ Ψ, which he obtains
from overhearing feedback exchanged between neighboring
legitimate nodes. This assumption enables evaluation under
a strong adversarial model, where the adversary is equipped
with substantial information about the system. Such a setting
ensures that the proposed scheme remains covert even when
Willie is highly capable and well-informed about the under-
lying physical-layer parameters. Note that this is the worst-
case scenario from a covertness perspective. Since the channels
change independently from one transmission slot to the next
and remain constant in a single slot, Willie can make use of
a single transmission slot for detection.

To detect communication between transmitter Th and re-
ceiver Rh for hop h, Willie is assumed to know the selected
pair of modalities mh and accordingly performs two separate
hypothesis tests—one per modality—and combines the results
to infer the presence of communication. The individual hy-
pothesis test for hop h and modality m ∈ mh are denoted
by

H(m)
0,h : y

(m)
Th,W

[l] = n
(m)
Th,W

[l],

H(m)
1,h : y

(m)
Th,W

[l] =
√
P

(m)

h g
(m)
Th,W

xh[l] + n
(m)
Th,W

[l],
(6)

where H(m)
0,h and H(m)

1,h are the null and alternative hypotheses
respectively, denoting no transmission and existence of trans-
mission for the hop h ∈ Ψ and modality m.

Using the average received signal strength ȳ
(m)
Th,W

=

1
L

∑L
l=1

∣∣∣y(m)
Th,W

[l]
∣∣∣2, Willie makes a binary decision as [3],

[22], [28], [29]

ȳ
(m)
Th,W

D(m)
1,h

≷
D(m)

0,h

δ
(m)
h . (7)

Here, δ(m)
h denotes the detection threshold for hop h and

modality m ∈ mh where D(m)
0,h and D(m)

1,h denote decisions in
favor of H(m)

0,h and H(m)
1,h , respectively. To determine the opti-

mal detection thresholds, we adopt the iterative optimization
method proposed in [3], which jointly updates the thresholds
across modalities in a coordinated fashion. Specifically, the
threshold for each modality is refined by considering the
current value of the other, allowing the process to converge
efficiently without relying on an exhaustive grid search.

The probability of missed detection P
(m)
MD,h and the proba-

bility of false alarm P
(m)
FA,h of hop h and modality m ∈ mh

are respectively defined as

P
(m)
MD,h ≜ P

(
D(m)

0,h | H(m)
1,h

)
,P

(m)
FA,h ≜ P

(
D(m)

1,h | H(m)
0,h

)
. (8)

We adopt the energy detection model commonly used in
covert communication [28], where the detection statistic ȳ(m)

Th,W

follows a Gaussian distribution under both hypotheses. Using
this model and the threshold test in (7), the probabilities of
missed detection P

(m)
MD,h and false alarm P

(m)
FA,h are expressed

as

P
(m)
FA,h = 1−

γ

(
L,

Lδ
(m)
h

Ω(m)N0,W

)
Γ(L)

,

P
(m)
MD,h =

γ

(
L,

Lδ
(m)
h

P
(m)
h

∣∣∣g(m)
Th,W

∣∣∣2+Ω(m)N0,W

)
Γ(L)

.

(9)

After performing a threshold test for each of the chosen
modalities, Willie then combines the decision obtained for
each modality as follows:

D0,h = {Dm(a)

0,h ∩ Dm(b)

0,h }, D1,h = {Dm(a)

1,h ∪ Dm(b)

1,h }, (10)

where D0,h represents Willie’s overall decision that no com-
munication occurs on hop h. Conversely, D1,h signifies
Willie’s decision in favor of the existence of the transmission.
Thus, the probability of missed detection PMD,h and the
probability of false alarm PFA,h for hop h based on the overall
decision are respectively presented as

PMD,h ≜ P(D0,h | H1,h), PFA,h ≜ P(D1,h | H0,h). (11)

Here, H0,h denotes the overall hypothesis that no communi-
cation occurs on hop h, and H1,h as the overall hypothesis
that transmission occurs on hop h. The decision made for
one modality is independent of the decision made for the
other modality. Further, since the two modalities are being

used simultaneously, we have H(m
(a)
h )

1,h = H(m
(b)
h )

1,h ≜ H1,h and

H(m
(a)
h )

0,h = H(m
(b)
h )

0,h ≜ H0,h. Using these facts, we can simplify
PMD,h and PFA,h in (11) as

PMD,h = P(D(m
(a)
h )

0,h |H1,h)P(D
(m

(b)
h )

0,h |H1,h) = P
(m

(a)
h )

MD,h P
(m

(b)
h )

MD,h ,
(12)

PFA,h = P(D(m
(a)
h )

1,h ∪ D(m
(b)
h )

1,h |H0,h)

= P
(m

(a)
h )

FA,h + P
(m

(b)
h )

FA,h − P
(m

(a)
h )

FA,h P
(m

(b)
h )

FA,h ,
(13)

Then, the total error probability (TEP) for hop h is defined as

PTEP,h = PMD,h + PFA,h. (14)

We adopt the TEP as the primary metric to quantify
covertness. TEP, defined as the sum of false alarm and missed
detection probabilities, captures the adversary’s uncertainty
in distinguishing between the presence and absence of a
transmission. Unlike detection error probability (DEP), which
incorporates the probabilistic transmission behavior of legiti-
mate users, TEP abstracts away transmission scheduling and
focuses solely on the detectability of the signal itself. This
makes it a conservative and deployment-agnostic measure of
covertness.
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C. Problem Formulation

DECOR aims to optimally choose two simultaneous modal-
ities out of M available modalities for each of the hops in
route ψ. We select two out of M modalities to balance covert
performance and computational practicality. Prior work has
shown that using more modalities significantly increases the
complexity of the adversary’s detection, requiring iterative
threshold tuning that becomes infeasible in real-time. Lim-
iting to two modalities retains the benefits of diversity while
ensuring efficient and scalable covert communication.

It also needs to minimize the end-to-end radio frequency
(RF) transmit power, i.e., the transmission energy, while
satisfying the requirements on end-to-end throughput, Ureq
and per-hop TEP, Preq TEP. We note that our energy model
focuses on the transmission power and does not include other
hardware-related energy costs such as circuitry or front-end
components, which are typically static or platform-specific.

We denote the sum transmit power of both the selected

modalities m(a)
h and m(b)

h for hop h as Ph = P
(m

(a)
h )

h +P
(m

(b)
h )

h .
Then, the total transmit power for the entire route is defined
by

P (ψ) =
∑
h∈ψ

Ph. (15)

Thus, we can formulate the end-to-end transmit power
minimization problem with constraints on the end-to-end
throughput, U(ψ) and per-hop TEP, PTEP,h as

min

ψ∈Ψ,

{
m

(a)
h ,m

(b)
h ,P

(m
(a)
h

)

h ,P
(m

(b)
h

)

h

}
h∈ψ

P (ψ)

s.t. PTEP,h ≥ Preq TEP, ∀h ∈ ψ,

U(ψ) ≥ Ureq,

(16)

In this work, we focus on the development of an algorithm to
solve the problem in (16) in a decentralized fashion.

III. PROPOSED DECENTRALIZED ENERGY EFFICIENT
COVERT ROUTING

The proposed DECOR algorithm jointly optimizes the route
and transmit power at all nodes along the route with the aim of
minimizing end-to-end total transmit power while maintaining
the constraints on the throughput and the TEP.

A. Link-level Optimization of Power and Modality

We begin by describing the link-level optimization carried
out at each relay node in route ψ. To maintain the end-to-
end throughput constraint of Ureq, each hop h in route ψ also
needs to satisfy this requirement, as shown in (5). Thus, we
can simplify the end-to-end throughput requirement to per-hop
throughput requirement as Uh ≥ Ureq,∀h ∈ ψ.

The throughput of any hop h with the transmission modality
m is an increasing function of the corresponding transmit
power for the modality as in (3). Hence, the sum through-
put of multiple modalities for any given hop is also an
increasing function of the sum transmit power for the cor-
responding modalities. Contrarily, the TEP is a decreasing
function of transmit power [3] where the higher TEP indicates

better covertness. This indicates that the problem in (16)
involves conflicting requirements—achieving higher through-
put requires higher transmit power, whereas satisfying TEP
constraints requires lower transmit power.

Link-Level Optimization in Algorithm 1 determines, for each
neighbor node, the optimal pair of communication modalities
and their corresponding transmit powers that minimize energy
consumption while maintaining user-defined constraints. For
every neighbor hop h ∈ H, the algorithm iterates through
all valid combinations of two distinct modalities from the
set of all modalities M . For each modality pair (m

(i)
h ,m

(j)
h ),

the transmit powers P (m
(i)
h )

h and P
(m

(j)
h )

h are treated as op-
timization variables. The optimization aims to minimize the

sum transmit power P (m
(i)
h )

h + P
(m

(j)
h )

h under two constraints:
(i) the combined throughput of both modalities must meet
a predefined requirement Ureq, and (ii) the covertness metric
must be at or above a target TEP threshold Preq TEP

To solve this constrained optimization problem, we employ
sequential least squares programming (SLSQP) [30], which is
well-suited for handling nonlinear inequality constraints. Since
only two variables are optimized per iteration (the transmit
powers), the algorithm remains computationally efficient with
a worst-case time complexity of O(n3), where n = 2. Once
all modality pairs are evaluated, the pair yielding the lowest
feasible sum transmit power is selected for hop h. By mini-
mizing the per-hop sum transmit power under strict covertness
constraints, link-level optimization facilitates energy-efficient
and decentralized route formation in the DECOR framework.

Algorithm 1: Link-Level Optimization
1: Input: Neighbor hop set H, modality set

M = {m(1), . . . ,m(M)}, required throughput Ureq, required
TEP Preq TEP

2: Output: Optimal modality pair and transmit powers

{(m(a)
h ,m

(b)
h ), P

(m
(a)
h

)

h , P
(m

(b)
h

)

h } for each h ∈ H
3: for each hop h ∈ H do
4: Initialize Pmin

h ←∞
5: for each pair (m(i)

h ,m
(j)
h ) ∈M×M, m

(i)
h ̸= m

(j)
h do

6: Use SLSQP to minimize P
(m(i))
h + P

(m(j))
h s.t.

U
(m

(i)
h

)

h + U
(m

(j)
h

)

h ≥ Ureq and PTEP,h ≥ Preq TEP

7: if P (m
(i)
h

)

h + P
(m

(j)
h

)

h < Pmin
h then

8: Update: Pmin
h ← P

(m
(i)
h

)

h + P
(m

(j)
h

)

h ; m(a)
h ← m

(i)
h ,

m
(b)
h ← m

(j)
h

9: P
(m

(a)
h

)

h ← P
(m

(i)
h

)

h ; P
(m

(b)
h

)

h ← P
(m

(j)
h

)

h
10: end if
11: end for
12: end for
13: Return: {(m(a)

h ,m
(b)
h ), P

(m
(a)
h

)

h , P
(m

(b)
h

)

h }∀h∈H

B. Network Level Optimization with Clustering

Following link-level optimization, network-level optimiza-
tion identifies the end-to-end path from source to destination
that minimizes total RF transmission energy while satisfying
user-defined constraints on throughput and covertness.
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Algorithm 2: Constrained Agglomerative Clustering
Based on Multi-Modal Channel Gain

1: Input: Number of nodes n, Maximum cluster size

max cluster size, Channel gain matrices g(m
(a)
h )

Th,Rh
and

g
(m

(b)
h )

Th,Rh
of the optimal modality pair

2: Output: Cluster groups cluster groups
3: Step 1: Symmetrize Uplink and Downlink Channel

Gains
4: for each transmitter–receiver pair (Th, Rh) such that
Th ̸= Rh do

5: Set

g̃
(m

(a)
h )

Th,Rh
=

g
(m

(a)
h

)

Th,Rh
+g

(m
(a)
h

)

Rh,Th

2 , g̃
(m

(b)
h )

Th,Rh
=

g
(m

(b)
h

)

Th,Rh
+g

(m
(b)
h

)

Rh,Th

2
6: end for
7: Step 2: Combine Channel Gains

8: Define g̃Th,Rh =
g̃
(m

(a)
h

)

Th,Rh
+g̃

(m
(b)
h

)

Th,Rh

2
9: Step 3: Convert Gain to Distance Matrix

10: Define DTh,Rh = 1
g̃Th,Rh+ϵ

and DTh,Th = 0 for all Th.
11: Step 4: Form Clusters
12: Initialize unclustered nodes V = {0, . . . , n− 1} and

empty cluster groups cluster groups.
13: while V ̸= ∅ do
14: Apply agglomerative clustering on V with global

distance matrix D, with iterative max cluster size
enforcement.

15: Assign formed clusters to cluster groups and
update V .

16: end while
17: Return cluster groups.

To achieve this, we employ a clustering-based strategy that
reduces data overhead associated with route formation, thereby
further improving energy efficiency. By organizing the nodes
into clusters, the routing process becomes more structured,
reducing redundant control messages and the computational
burden of route discovery. Instead of handling route formation
at a fully distributed level, clustering enables more efficient
routing decisions, reducing communication overhead without
compromising covertness.

This process consists of three main components. (i) Clus-
ter Formation in Algorithm 2 organizes all the nodes into
clusters using a constrained agglomerative clustering ap-
proach [31]based on channel gain of the optimum pair of
modalities (selected through Algorithm 1), ensuring efficient
connectivity while limiting cluster size. (ii) Cluster Head
Selection and Rotation in Algorithm 3 assigns a cluster head
within each cluster based on residual energy and average intra-
cluster channel gain. (iii) Finally, Optimal Route Formation
in Algorithm 4 establishes an optimal route across clusters,
minimizing the end-to-end transmit power while maintaining
the constraints on covertness and throughput.

1) Cluster Formation: As presented in Algorithm 2, the
DECOR cluster formation groups nodes with better channel
conditions while enforcing a user-defined maximum cluster
size. However, clusters may include fewer than the maximum

allowed nodes when no additional nodes are available. This
provides flexibility in accommodating varying node distribu-
tions and number of nodes across the network. The clustering
process begins by first symmetrizing the channel gain for each
modality separately, ensuring that the uplink and downlink
gains between any two nodes are averaged. This step accounts
for bidirectional variations in channel conditions. Next, the
gain values from both modalities (selected through Algorithm
1) are combined by averaging them, resulting in a single
representative channel gain value for each node pair. This
combined gain is then converted into a distance metric, where
higher channel gains correspond to shorter distances, allowing
nodes with stronger connectivity to be clustered together.
This transformation is necessary because standard clustering
algorithms, such as agglomerative clustering [31], operate on
pairwise distances. By converting channel gain into a distance
metric, we ensure compatibility with these algorithms while
preserving the notion that stronger connectivity implies spatial
proximity. As shown in Step 3 of Algorithm 2, we add a
small constant ϵ = 10−3 to the denominator in distance metric
computation to avoid division by zero when the channel gain
is very low (e.g., weak or non-line-of-sight links). ϵ ensures
numerical stability without significantly affecting the relative
distance values.

Agglomerative clustering is then performed on the derived
distance matrix using average linkage, where the distance
between clusters is computed as the average of inter-node
distances [31]–[33]. To enforce the maximum cluster size, we
iteratively adjust the clustering threshold to ensure each cluster
contains no more than the user-defined number of nodes. This
ensures that clusters remain balanced and do not become
excessively large, which could introduce higher intra-cluster
communication overhead. The resulting clusters provide a
structured foundation for subsequent cluster head selection and
optimal route formation, improving routing efficiency while
maintaining covert communication constraints.

2) Cluster Head Selection: Once clusters are formed, a
cluster head is selected for each cluster to manage intra-
cluster coordination and facilitate energy-efficient routing as
presented in Algorithm 3. The cluster head for each cluster
is determined based on a weighted score that incorporates
two key factors: (i) the node’s residual energy and (ii) its
average channel gain with other nodes in the cluster. Each
node computes its average channel gain by summing its
channel gains to each of the other nodes in the cluster and
normalizing by the cluster size. The final score for each node
is computed as a weighted sum of its residual energy and
average channel gain, where the weights α and β control
the relative importance of energy efficiency and connectivity.
The node with the highest score is selected as the cluster
head. We set both weighting factors to α = β = 0.5
to give equal importance to the corresponding components
in the optimization. While this choice provides a balanced
trade-off in our setup, exploring adaptive or context-aware
weighting schemes based on application-specific constraints
or environmental dynamics remains a promising direction for
future work.

To prevent excessive energy depletion of a single node,
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Algorithm 3: Cluster Head Selection Based on Resid-
ual Energy and Channel Gain

1: Input: Clusters {C1, C2, . . . , Ck}, Residual energy
Residual Energy[i], channel gain matrix G, weights α
and β

2: Output: Cluster heads cluster heads
3: for each cluster Ci ∈ {C1, C2, . . . , Ck} do
4: Initialize empty list Scores
5: for each node n ∈ Ci do
6: Compute average channel gain for node n within

Ci: Avg Gain[n] =
1

|Ci| − 1

∑
q∈Ci
q ̸=n

gn,q

7: Compute score for node n:

Scoren = α · Residual Energy[n] + β · Avg Gain[n]

8: Append (node n,Scoren) to Scores
9: end for

10: Select node with highest score in Scores:

Cluster Headi = arg max
n∈Ci

Scoren
11: Assign Cluster Headi to cluster heads[Ci]
12: end for
13: Return cluster heads

cluster heads are rotated periodically based on updated residual
energy levels and channel conditions. By periodically re-
evaluating cluster head selection, the network ensures bal-
anced energy consumption while maintaining strong intra-
cluster connectivity, leading to improved overall network per-
formance.

3) Optimal Route Formation: DECOR employs novel Dijk-
stra’s [34], [35] based link state routing protocol (LSRP) [36],
[37] (D-LSRP) to determine the most energy-efficient route
from the source to the destination while ensuring covert
communication constraints as illustrated in Algorithm 4. The
process begins with each node employing Algorithm 1 to
compute the minimum sum transmit power (of both the
modalities) for all its possible links. Next, the nodes form the
clusters and select the respective cluster head based on channel
gain and residual energy using Algorithm 2 and Algorithm 3
respectively.

Each node then forwards the transmit power information to
its respective cluster head, which serves as a representative for
routing decisions at the cluster level. Once the cluster head
receives transmit power values from all cluster members, it
aggregates them to construct a Cluster State Packet (CSP),
which aggregates the transmit power information of the cluster
members along with its internal connectivity information.
These CSPs are exchanged among cluster heads, allowing
them to build a Link State Database (LSDB) that represents the
network topology and transmission costs. With this network-
wide information, each cluster head is capable of determining
the optimal end-to-end route using Dijkstra’s algorithm, en-
suring that the selected path minimizes total transmit power
while satisfying covertness and throughput constraints.

Dijkstra’s algorithm is used to compute the path with
the lowest aggregate transmit power from the source to the

Algorithm 4: Cluster-Based Route Optimization with
Dijkstra’s based link state routing protocol (D-LSRP)

1: Input: Network nodes N , links L, clusters C, source
node A ∈ N , destination node B ∈ N

2: Output: Optimal route ψ∗ from A to B with minimized
transmit power

3: Step 1: Compute Minimum Sum Transmit Power
4: for each n ∈ N do
5: Solve Algorithm 1 to obtain (m

(a)
h,n,m

(b)
h,n) and Ph for

l ∈ L while maintaining Preq TEP and Ureq.
6: end for
7: Step 2: Cluster Formation and Cluster Head

Selection
8: Form clusters C = {C1, C2, . . . } using Algorithm 2.
9: Select cluster heads CHi for each Ci using Algorithm 3.

10: Step 3: Cluster Heads Aggregate Transmit Power
11: for each n ∈ N do
12: Send Ph for all l ∈ L to CH(n).
13: end for
14: for each CHi ∈ C do
15: Construct and exchange

CSPi =
∑
n∈Ci Phfor all l ∈ L.

16: end for
17: Step 4: Compute Optimal Route using Dijkstra’s

Algorithm
18: Initialize p(A) = 0, p(n) = ∞ for n ̸= A, and an empty

set S for visited nodes.
19: Use a priority queue Q to process nodes based on p(n).
20: while Q ̸= ∅ do
21: Extract node u with the smallest p(u) from Q and add

it to S.
22: for each neighbor v of u do
23: if v /∈ S and (u, v) ∈ L then
24: Update p(v) if p(u) + tx power(u, v) < p(v) and

adjust Q.
25: end if
26: end for
27: end while
28: Step 5: Extract Optimal Route
29: Backtrack from B to A using predecessors to obtain ψ∗

30: Return ψ∗

destination. The process begins by initializing the transmit
power of the source node to zero, while all other nodes are
initialized to a large value (typically treated as infinity in
Dijkstra’s based algorithm [35]) to represent no known path
to them at the beginning. A priority queue is used to process
nodes based on their current transmit power values. The node
with the lowest transmit power is extracted, and its neighboring
nodes are examined. If the total transmit power of reaching
a neighboring node through the current node is lower than
its previously recorded value, the power is updated, and the
neighbor is added to the queue. This process continues until
the destination is reached. Once the shortest power path is
determined, the final route is extracted by backtracking from
the destination to the source.

Unlike traditional approaches [38], [39] that limit routing to
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Fig. 2: Overall Data Flow Architecture in DECOR.
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only cluster heads, this method ensures that any node in the
network can be selected for route formation if it contributes to
minimizing the overall transmit power. By leveraging cluster-
ing and efficient route computation, this optimization strategy
enables decentralized covert routing with improved energy
efficiency and data overhead.

IV. DATA FLOW ARCHITECTURE FOR ROUTE FORMATION

The data flow in DECOR is structured to facilitate adaptive
and efficient routing while maintaining energy efficiency and
covertness. The route formation follows a cyclic process,
where nodes continuously exchange different types of packets
to update and optimize routing decisions. The process consists
of distinct stages, each involving a specific packet type, as
illustrated in Fig. 2.

The process starts with the transmission of null data pack-
ets (NDPs) containing no data packets to perform channel
sounding, which allows for estimation of channel frequency
response (CFR). The structure of an NDP is detailed in Fig. 3
and consists of a Node ID, a Sink Node ID, and Pilot Data.
This enables channel estimation and allows the network to
perform node-level optimization using Algorithm 1.

After the node-level optimization, nodes initiate clustering
through the Cluster Initialization Packet as presented in Fig. 3
(bottom). Every node in the network transmits the Cluster
Initialization Packet to every other node to enable the nodes
to exchange their channel gain values and residual energy,
allowing the formation of clusters and selection of cluster
head through execution of Algorithm 2 and 3 respectively. To
enable this exchange, we assume the presence of a low-rate,

reliable coordination channel (e.g., an out-of-band link or a
pre-assigned control frequency) to support this exchange. In
our current design, we also assume that each node can reach
every other node for coordination during cluster formation. If
certain nodes are out of communication range, the clustering
process adapts to the subset of nodes that can reach one
another, in line with the constraints of our clustering design.
Note that, to optimize the data overhead in cluster formation,
the nodes transmit the Cluster Initialization Packet only once
in the network’s lifetime.

Once clusters are formed, each node transmits an Intra-
Cluster Packet (Fig. 4a) to its respective Cluster Head (CH).
This packet contains the minimum sum transmit power re-
quired to maintain the user-defined throughput and covertness
constraints for all possible links within the network. The
cluster head aggregates the power consumption data of all
nodes in its cluster to share this information with all the other
cluster heads through Inter-Cluster Packets as presented in
Fig. 4a (bottom). This allows all the cluster heads to have
a global view of transmit power consumption information of
every node’s eligible links maintaining the defined constraints.
This enables every cluster head to have a global view of
power consumption, enabling more effective multi-hop route
computation.

With the global view of the power consumption information,
every cluster head employs Dijkstra’s Algorithm to compute
the optimal route using the collected transmission power
metrics as presented in Algorithm 4. Unlike conventional
clustering-based approaches where routing is restricted to clus-
ter heads only, DECOR ensures that any node in the network
can participate in the route. This results in an energy-efficient
path while satisfying covertness and throughput constraints.
After the optimal route is identified, cluster heads transmit the
Route Announcement Packet (Fig. 5) to inform the relevant
cluster nodes of their roles in the finalized path. This ensures
that all participating nodes are synchronized with the updated
routing strategy.

In subsequent cycles, instead of the Cluster Initialization
Packet, Intra-Cluster Re-evaluation Packets and Inter-Cluster
Re-evaluation Packets as presented in Fig 4b (top) and 4b
(bottom), respectively, are exchanged to dynamically adjust
routing decisions based on real-time channel variations. Firstly,
the cluster members share the updated channel gain infor-
mation to their respective cluster head through Intra-Cluster
Re-evaluation Packets. If significant change in channel gains
are detected in comparison to the channel gains when the
clusters were last formed, the re-clustering process begins with
the transmission of the Inter-Cluster Re-evaluation Packets.
With this packet every cluster head shares the updated channel
gain and residual energy information of the cluster members
with every other cluster head. Thus, new clusters are formed
with the transmission of Intra-Cluster Routing, Inter-Cluster
Routing, and Route Announcement Packet as stated earlier.
However, if there is no significant change in channel gains,
DECOR directly announces the same routing path through
Route Announcement Packet. Moreover, after every C cycles
cluster heads are rotated based on the channel gain and residual
energy.
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Fig. 4: Comparative analysis of with YolactACOS and EdgeDuet. The metrics are averaged over the two environments.
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Through this structured data flow, DECOR achieves an adap-
tive, decentralized, and energy-efficient routing mechanism.
The cyclic exchange of packets ensures robust and covert com-
munication while dynamically responding to environmental
fluctuations.

V. NUMERICAL ANALYSIS

A. Simulation Environment and Baselines

The simulation environment, as illustrated in Fig. 6, consists
of a three-dimensional cluttered environment with dimensions
of 250× 250× 9.5 m3, featuring multiple concrete buildings
and a flat ground. The environment includes 36 transceiver
nodes, represented as small red cones, each equipped with ver-
tically polarized short dipole antennas positioned at a height of
3 m above the ground. The nodes operate across three distinct
communication modalities, centered at 400 MHz, 900 MHz,
and 2.4 GHz, with channel characteristics computed based on
the ray-tracing simulator within the EM.CUBE commercial
software [40]. This data provides a high-fidelity model to
assess the performance of the proposed routing approach using
realistic models of the signal propagation environment.

To ensure consistency in numerical evaluations, we set
L = 100, α = 0.5, β = 0.5 while the noise spectral
densities for the legitimate and adversarial receivers are set
within the range of N0,B ∈ [−110,−105] dBm and N0,W ∈
[−110,−105] dBm, respectively. We set the stability constant
used in the distance computation (see Step 3 of Algorithm 2)
as ϵ = 10−3 to ensure numerical robustness during clustering.
Unless mentioned otherwise, for all the experiments, we keep
the total number of nodes as 36, available bandwidth for each
communication modality fixed at Ω(m) = 3 MHz, maximum

250 m

250 m

9.5 m

x

y
z

Fig. 6: Three-dimensional simulation environment incorporat-
ing multiple transceiver nodes and concrete building obstacles.

number of nodes in a cluster as 6 and Willie’s location at the
Y-coordinate of 125 m to maintain a controlled environment
for analyzing covertness constraints.

To evaluate the effectiveness of DECOR, we design baseline
strategies by systematically adapting the optimization objec-
tive in Equation (16). In the single-modal routing baseline,
we restrict Equation (16) by enforcing a fixed communica-
tion modality m for all hops along the path. This effec-
tively removes the modality selection component, reducing
the formulation to a constrained instance where mh = m
for every hop h in the route ψ for m ∈ M . In contrast,
the naı̈ve simultaneous multi-modal routing baseline modifies
Equation (16) by enforcing a fixed modality pair (m(1)

h &
m

(2)
h or m(1)

h & m
(3)
h or m(2)

h & m
(3)
h ) for all h ∈ ψ without

allowing any per-hop adaptation. This simplification disables
the joint selection of optimal modalities and paths. These
baselines represent limited versions of our general problem
and allow us to quantify the performance gains achieved
by DECOR’s integrated optimization of modality and route
selection. We also include DEER [16], our prior state-of-the-
art decentralized approach that supports simultaneous multi-
modal covert routing but lacks clustering-based optimiza-
tion and data flow architecture. In contrast, DECOR enables
dynamic, per-hop multi-modal selection tailored to network
conditions and defined constraints.
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Fig. 7: Comparative analysis of data overhead of clustering vs
non-clustering approach for different numbers of nodes and
communication cycles.

B. Data Overhead Analysis

1) Performance with Varying Network Size: We compare
the data overhead of DECOR with the state-of-the-art DEER,
as well as single-modal and naı̈ve multi-modal baselines,
under increasing network sizes with Ureq = 20 Mbps and
Preq TEP = 0.99, as shown in Fig. 7a. The average data
overhead is calculated with Willie at different X-coordinates
ranging from 0 m to 250 m. The overhead is broken into three
components: NDP, routing, and clustering. Routing dominates
overall overhead, especially in DEER, which lacks clustering.
For example, in a 36-node network, DECOR reduces routing
overhead by over 3.5x compared to DEER by aggregating link-
state data at cluster heads and limiting inter-cluster exchanges.

While NDP overhead remains constant across all schemes,
clustering adds a modest cost. However, this is outweighed
by the significant drop in routing overhead. As network size
increases, both routing and clustering overhead grow, but
clustering’s efficiency becomes more apparent. For instance,
at 24 nodes, DECOR reduces routing overhead by nearly
90% compared to DEER, despite only a modest increase in
clustering overhead.

2) Performance with Varying Communication Cycles: We
further evaluate how the data overhead of DECOR evolves
with increasing communication cycles in Fig.7b, comparing
it with the state-of-the-art non-clustering approach, DEER,
under user-defined throughput Ureq = 20 Mbps and per-
hop TEP constraint Preq TEP = 0.99. We consider the average
overhead with Willie placed at various X-coordinate positions.
While overhead remains low across all configurations for a
small number of cycles (e.g., 10), routing overhead grows
significantly with more cycles– particularly in DEER. For
instance, at 100,000 cycles, DECOR reduces routing overhead
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Fig. 8: Comparative analysis of data overhead considering
different cluster size.

by over 91% compared to DEER, highlighting the efficiency of
intra-cluster aggregation. The NDP overhead increases linearly
with cycle count but remains equal across both methods.
Clustering in DECOR adds some overhead, reaching 4.36 Gb
at 100,000 cycles, but remains well below the routing savings.

Overall, routing dominates the communication cost, and
DECOR effectively limits it via localized cluster-based coor-
dination, ensuring scalability and efficiency even under heavy
communication load and required constraints.

3) Impact of Cluster Size in Data Overhead: To evaluate
the impact of cluster size on communication overhead in
DECOR, we analyze total and component-wise overhead across
1,000 communication cycles, as shown in Fig. ??. As the
maximum cluster size increases from 4 to 12 nodes, total
overhead steadily decreases due to fewer cluster heads and
reduced inter- and intra-cluster coordination. However, beyond
12 nodes, the overhead starts rising again, forming a U-
shaped trend. This reversal stems from increased coordination
complexity and heavier intra-cluster communication burdens.
Both routing and clustering overheads initially decrease but
rise again with excessively large clusters. NDP overhead
remains constant, being independent of cluster configuration.
Although not shown in the figure, the baseline DEER approach
incurs over 1.5 Gb of fixed routing overhead, underscoring
DECOR ’s efficiency gains through adaptive clustering.

In summary, moderate cluster sizes (8–12 nodes) offer
an optimal balance between reduced control overhead and
coordination complexity for decentralized covert routing.

C. Energy Consumption Analysis

1) Energy Consumption as a Function of Adversary’s
(Willie’s) Location: We evaluate the energy performance of
DECOR against DEER, single-modal, and naı̈ve simultaneous
multi-modal approaches under a fixed TEP constraint of
Preq TEP = 0.99 and two throughput settings: Ureq = 20 Mbps
and 30 Mbps, across 1,000 cycles. Each modality operates
at 3 MHz bandwidth, and Willie’s X-position is varied from
0–250 meters. As shown in Fig. 9a and 9c, DECOR consis-
tently consumes significantly less energy than single-modal
approaches. At 20 Mbps, it achieves an average energy usage
of 6.54 J, over 32× lower than the best-performing single-
modality baseline. This efficiency holds at 30 Mbps, where
single-modal schemes become even more energy-intensive,
highlighting the inflexibility of fixed-frequency paths.
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(d) DECOR vs naı̈ve simultaneous multi-modality approaches –
30 Mbps

Fig. 9: Energy consumption analysis of DECOR as a function of Willie’s location. Each modality has a bandwidth of 3 MHz
while predefined Preq TEP = 0.99 and energy consumption is calculated over 1000 cycles of communication.

TABLE I: Total transmit energy consumption (in Joules) for various approaches under different per-hop TEP thresholds,
Preq TEP.

Approach Energy Consumption (J)

TEP=0.99 TEP=0.96 TEP=0.93 TEP=0.90 TEP=0.87 TEP=0.84 TEP=0.81 TEP=0.78 TEP=0.75

DECOR 7.55 7.93 8.33 8.75 9.19 9.65 10.13 10.63 11.16
DEER 64.04 67.24 70.60 74.13 77.83 81.72 85.81 90.10 94.61
400 MHz 263.50 276.68 290.51 305.03 320.28 336.29 353.10 370.76 389.30
900 MHz 331.26 347.82 365.21 383.47 402.65 422.78 443.92 466.12 489.42
2.4 GHz 819.28 860.24 903.25 948.41 995.83 1045.62 1097.90 1152.80 1210.44
400+900 MHz 82.74 86.88 91.22 95.78 100.57 105.59 110.87 116.41 122.23
400+2.4 GHz 117.73 123.62 129.80 136.29 143.10 150.25 157.76 165.65 173.93
900+2.4 GHz 162.84 171.98 181.58 191.66 202.25 213.36 225.03 237.28 250.15

In Fig. 9b and 9d we observe that while naı̈ve simultaneous
multi-modal combinations (e.g., 400 & 900 MHz) offer modest
gains over single-modal approaches, they will still consume
over 8.5x more energy than DECOR. At higher throughput,
these gaps widen further, confirming DECOR’s robustness in
adapting to increased demands.

Under the constrained bandwidth settings– 1% of the center
frequency as presented in Fig. 10a and 10b DECOR maintains
low energy usage (1.35 J on average), whereas fixed single-
and multi-modal routes experience sharp increases in energy
cost, particularly those involving lower-bandwidth channels
like 400 MHz. Even the most efficient naı̈ve pair remains
over 3x more energy-consuming in comparison to DECOR.
Fig. 11 illustrates this efficiency gain, showing how DECOR
adaptively selects the most energy-efficient link at each hop,
avoiding energy-costly paths taken by the naı̈ve combination
of modalities. These results confirm that DECOR’s dynamic

modality selection and route optimization provide strong en-
ergy savings and routing flexibility, even under user-defined
and spectral constraints.

2) Energy Consumption as a Function of Preq TEP: Table I
summarizes the total transmit energy across different per-hop
TEP thresholds, Preq TEP, ranging from 0.75 (low covertness)
to 0.99 (high covertness). Since higher TEP values demand
higher stealth, they usually necessitate lower transmit power,
leading to reduced energy consumption. This inverse rela-
tionship between TEP and energy holds true across all the
schemes. For example, DECOR’s energy drops from 11.16 J
at Preq TEP = 0.75 to 7.55 J at 0.99. DEER and other baseline
schemes show similar trends, though their overall energy usage
remains much higher. Even under high TEP, single-modality
(e.g., 2.4 GHz at 819.28 J) and naı̈ve multi-modal strategies
(e.g., 400 & 900 MHz at 82.74 J) lag significantly behind
DECOR.
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Fig. 10: Energy consumption analysis of DECOR as a function
of Willie’s location considering 1% of the center frequency as
bandwidth for each modality. The predefined Preq TEP = 0.99,
Ureq = 30 Mbps, and energy consumption is calculated over
1000 cycles of communication.
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multi-modal approaches 
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Fig. 11: Route selection example of DECOR vs naı̈ve si-
multaneous multi-modal and single modal approaches while
Ures = 20Mbps and Preq TEP = 0.99.

Interestingly, although relaxing the covertness requirement
(i.e., reducing Preq TEP) gives the system more flexibility in
selecting transmit power and routes, it does not lead to lower
energy consumption. In fact, even DECOR shows increasing
energy usage under reduced covertness. This is because lower
covertness permits the use of higher transmit powers, which
may allow for longer but more power-hungry hops to meet
the same throughput requirement. As a result, DECOR may
shift from using low-power, short-range links to fewer high-
power hops– leading to higher total energy despite reduced
covert constraints. While energy efficiency and covertness
often conflict, our results show that relaxing covert constraints
does not always reduce energy usage.
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Fig. 12: End-to-end total energy consumption as a function
of different throughput constraints Ureq when Preq TEP, h =
0.99.

3) Energy Consumption as a Function of Throughput Con-
straints, Ureq: Fig. 12 shows end-to-end energy consump-
tion under increasing throughput constraints (Ureq from 10
to 40 Mbps), with a fixed per-hop covertness threshold of
Preq TEP = 0.99. In Fig. 12a, we compare DECOR with single-
modality schemes. As throughput increases, all approaches
consume more energy, but DECOR consistently uses far less.
For instance, at 40 Mbps, DECOR consumes 25.90 J, while
single-modal baselines reach up to 1962.49 J (2.4 GHz),
highlighting the inefficiency of fixed high-frequency paths
at higher data rates. Fig. 12b contrasts DECOR with naı̈ve
simultaneous multi-modal strategies. Though more efficient
than single-modality, they still consume significantly more
energy– up to 572.30 J at 40 Mbps—while DEER uses 220.77
J, nearly 9x higher than DECOR.

These results highlight DECOR’s scalability and efficiency
under increasing throughput demands, enabled by its adaptive
per-hop simultaneous modality and route selection, unlike
fixed-modality or non-clustered approaches.

VI. CONCLUSION

In this paper, we presented DECOR, a decentralized covert
routing framework designed for energy-efficient communica-
tion in heterogeneous wireless networks. Unlike prior ap-
proaches that rely on single-modal or fixed multi-modal paths,
DECOR adaptively selects the optimal pair of communication
modalities at each hop, leveraging node-level transmit power
optimization and a clustering-based network-level routing
strategy. This ensures that DECOR can meet strict user-defined
throughput and covertness constraints while minimizing en-
ergy expenditure. We also proposed a practical data flow ar-
chitecture with tailored packet formats to enable decentralized
route formation and efficient maintenance with low control
overhead. Our extensive numerical evaluations demonstrated
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DECOR achieves up to 23.5× improvement in energy consump-
tion over single-modality baselines and up to 12× reduction in
routing overhead compared to the state-of-the-art simultaneous
multi-modal approach. Furthermore, we showed that DECOR
remains robust across varying throughput constraints and
covertness thresholds, maintaining its efficiency even under
tighter spectral and adversarial conditions. Moving forward,
key directions include addressing inter-modality interference
in dense deployments, incorporating latency analysis to better
understand delay-performance tradeoffs, and demonstrating
scalability and adaptability to higher mobility.
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