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Abstract—In this paper, we propose BeamSense, a com-
pletely novel approach to implement standard-compliant Wi-
Fi sensing applications. Wi-Fi sensing enables game-changing
applications in remote healthcare, home entertainment, and home
surveillance, among others. However, existing work leverages the
manual extraction of channel state information (CSI) from Wi-Fi
chips to classify activities, which is not supported by the Wi-Fi
standard and hence requires the usage of specialized equipment.
On the contrary, BeamSense leverages the standard-compliant
beamforming feedback information (BFI) to characterize the
propagation environment. Conversely from CSI, the BFI (i) can
be easily recorded without any firmware modification, and (ii)
captures the multiple channels between the access point and
the stations, thus providing much better sensitivity. BeamSense
includes a novel cross-domain few-shot learning (FSL) algorithm
to handle unseen environments and subjects with few additional
data points. We evaluate BeamSense through an extensive
data collection campaign with three subjects performing twenty
different activities in three different environments. We show that
our BFI-based approach achieves about 10% more accuracy
when compared to CSI-based prior work, while our FSL strategy
improves accuracy by up to 30% and 80% when compared with
state-of-the-art cross-domain algorithms.

Index Terms—Wi-Fi sensing, IEEE 802.11ac, SU-MIMO, MU-
MIMO, beamforming, beamforming feedback angles

I. INTRODUCTION

S INCE 1990, Wi-Fi has become the technology of choice
for Internet connectivity in indoor environments [1]. Be-

yond connectivity, Wi-Fi signals can be used as sounding
waveforms to perform activity recognition [2], health mon-
itoring [3], and human presence detection [4], among oth-
ers [5]. The intuition behind Wi-Fi sensing is that humans
act as obstacles to the propagation of radio signals in the
environment. Specifically, when encountering the human body,
the radio waves undergo reflections, diffractions and scattering
that make the signals collected at the Wi-Fi receiver differ
from the transmitted ones. Wi-Fi sensing aims at detecting
the changes in the Wi-Fi signals and associating them to
the way the subject stays/moves in the environment, thus
realizing device-free monitoring solutions. To date, the vast
majority of Wi-Fi sensing systems – discussed in Section II –
leverage channel measurements obtained from pilot symbols
as sensing primitive. Such measurements are usually referred
to as channel state information (CSI) and describe the way
the signals propagate in the environment. Despite leading to
good performance, CSI-based techniques require extracting
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and recording the CSI estimated by the Wi-Fi devices involved
in the sensing activities, and such operations are currently
not supported by the IEEE 802.11 standard. This has led to
the introduction of custom-tailored firmware modifications to
extract the CSI [6], [7], [8], [9], [10], which makes the sensing
process not scalable. Such CSI extraction tools only provide
support for single-user multiple-input multiple-output (MIMO)
sensing as the channel is sounded on the link between the
transmitter and the device implementing the extraction tool.
Therefore, Wi-Fi sensing approaches relying on CSI extraction
tools cannot benefit from the spatial diversity that can be
gained through multi-user MIMO (MU-MIMO) transmissions.
Spatial diversity may be achieved considering multiple CSI
collectors but this would increase the computation burden as
synchronization among the devices would be needed. More-
over, even if CSI extraction could be supported in the future
without the need for custom-tailored firmware modifications,
it would require additional processing to extract the data from
the chip, thus increasing energy consumption. Therefore, we
argue that more suitable approaches to Wi-Fi sensing should
be put forward.
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Fig. 1: CSI-based vs BFI-based Wi-Fi sensing.

In this paper, we propose BeamSense, an entirely new
approach to Wi-Fi sensing that leverages the MU-MIMO ca-
pabilities of Wi-Fi to drastically increase sensing performance
while substantially reducing sensing overhead. As shown in
Figure 1, BeamSense leverages the beamforming feedback
information (BFI) – traditionally used to beamform transmis-
sions – to estimate the propagation environment between the
access point (AP) and the connected stations (STAs). In stark
contrast with CSI-based sensing, BeamSense (i) does not
need firmware modifications, since any off-the-shelf Wi-Fi
device can capture BFI packets, which are sent unencrypted to
keep the processing delay below a few milliseconds [11]; and
(ii) does not require synchronization among receivers, since
a single BFI report contains the information about all the
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MIMO channels established between the AP and the STAs.
In fact, while devices empowered with CSI extraction tools
allow obtaining information on a single MIMO channel, when
capturing the BFI we obtain the channel information associ-
ated with all the STAs involved in a MU-MIMO transmission.
Thus, multiple spatially diverse channel information is col-
lected with a single capture. For this reason, BeamSense
exhibits far better performance in challenging environments,
as shown in Section IV.

This paper provides the following contributions:
• We propose BeamSense, a new approach to Wi-Fi sensing
where the standard-compliant BFI routinely sent in MU-
MIMO Wi-Fi networks is used to characterize the propagation
environment between the MU-MIMO users and the AP. To
the best of our knowledge, this is the first work proposing the
utilization of BFI to perform Wi-Fi sensing;
• We propose a deep learning (DL)-based Fast and Adap-
tive Micro Reptile Sensing (FAMReS) algorithm to perform
activity classification based on BFI. We chose DL since it
has shown remarkable performance in classifying activities
in Wi-Fi sensing settings [12]. However, it is well-known
that DL models may perform poorly when tested in different
settings [13]. For this reason, FAMReS leverages few-shot
learning (FSL) to quickly generalize to different subjects and
environments with few additional data points;
•We extensively evaluate BeamSense through a comprehen-
sive data collection campaign, with three subjects performing
twenty different activities in three different environments. For
that, we built a reconfigurable IEEE 802.11ac MU-MIMO
network with three STAs and one AP. The Wi-Fi network was
also synchronized with a camera-based system that records
the ground truth for our experiments and a secondary IEEE
802.11ac network empowered with Nexmon CSI [8] to con-
currently collect the CSI measurements used for comparative
analysis. We show that our BFI-based approach combined
with a traditional convolutional neural network (CNN) with-
out pre-processing achieves about 10% more accuracy when
compared to state-of-the-art CSI-based techniques, which uses
pre-processing. Moreover, FAMReS improves accuracy by up
to 30% and 80% when compared with state-of-the-art cross-
domain algorithms. For reproducibility, we will release the
entirety of our 800 GB dataset and our code.

The rest of the article is organized as follows. In Section II
we review the existing literature in the area. The BeamSense
Wi-Fi sensing system is illustrated in Section III whereas
the performance evaluation of the system is presented in
Section IV. Section V concludes the discussion.

II. RELATED WORK

Over the last ten years, a lot of efforts have been made
to explore wireless sensing, which is summarized by Liu et
al. in [14]. The first Wi-Fi sensing approaches were based
on the received signal strength indicator (RSSI) [15], [16],
[17], [18], [19], [20]. More recently, researchers have focused
on the more fine-grained CSI information that describes how
the wireless channel modifies signals at different frequencies
rather than providing a cumulative metric on the signal at-
tenuation as the RSSI does. Passive Wi-Fi radar (PWR)-based

approaches [21], [22], [23], [24], [25] have also been proposed
in the literature. However, such an approach requires special-
ized hardware (software defined radio (SDR)) to analyze the
collected signal. In the rest of the section, we focus on CSI-
based sensing, and summarize the main research on the topic.

Background on CSI-based Sensing. The term CSI can refer
both to the time-domain channel impulse response (CIR) or the
frequency-domain channel frequency response (CFR). Specif-
ically, the CIR encodes the information about the multipath
propagation of the transmitted signal: each peak in the CIR
represents a propagation path characterized by a specific time
delay (linked with the length of the path) and an attenuation.
Multipath propagation is a typical phenomenon of indoor
environments, where obstacles (objects, people, animals) in the
surroundings act as reflectors/diffractors/scatterers for the irra-
diated wireless signals. In turn, the receiver collected different
copies of the transmitted signal each associated with a different
propagation, or, equivalently, an obstacle in the environment.
The CFR represents the Fourier transform of the CIR and
describes how the environment modifies signals transmitted
with different carrier frequencies. Specifically, indicating with
x(f, t) and y(f, t) the frequency domain representation of
the transmitted and received signals at time t and frequency
f respectively, and with h(f, t) the CFR, we have that
y(f, t) = h(f, t)×x(f, t) [26]. Considering the M×N MIMO
orthogonal frequency-division multiplexing (OFDM) system,
with K sub-channels, and M and N transmitting and receiving
antennas respectively, the CFR is a K ×M ×N -dimensional
matrix providing the amplitude and phase information over
each OFDM sub-channel for any given pair of transmitting
and receiving antenna.

Existing Research on CSI-based Sensing. Over the last
decade, CSI-based sensing has been proposed for a wide vari-
ety of applications. Among the most compelling, we mention
person detection and identification [27], [28], [29], crowd
counting [30], [18], respiration monitoring [31], baggage
tracking [32], smart homes [33], [34], human pose tracking
[35], [36], [37], [38], patient monitoring [39], [40], with most
of the previous research activities focusing on human activity
recognition (HAR) and human gesture recognition (HGR)
[41], [42], [43], [44], [13], [45]. The above list is definitely
not exhaustive. For excellent survey papers on the topic, we
refer the reader to [46], [5], [2], [47]. In the following, we just
summarize the most recent approaches that are most related
to the work conducted in this article. Guo et al. presented
WiAR [48], a CSI-based system achieving up to 90% accuracy
in the recognition of 16 human activities. Similarly, a meta-
learning-based approach called RF-Net was presented in [49]
based on the usage of recurrent neural networks with long
short-term memory (LSTM) cells. However, only six activities
were considered in the evaluation. Regarding HGR, [43] and
[44] presented Widar 3.0 and OneFi, respectively considering
six and forty gestures. The authors in [43] proposed to use a
body velocity profile (BVP) measure which has been shown
to improve the generalization capability of the classification
algorithm. The authors of [44] used one-shot learning to clas-
sify unseen gestures with few labeled samples. The majority
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of previous work has been evaluated on 802.11n channel data
while, to the best of our knowledge, only two works considered
HAR in the context of 802.11ac [13], [12]. Meneghello et al.
proposed to use the Doppler shift estimated through the CSI to
obtain an algorithm that generalizes to different environments
[13]. Bahadori et al. use instead few-shot learning to achieve
environmental robustness [12].
Limitations of CSI-based Sensing. Since the CSI is computed
at the physical layer (PHY), it is not readily available with off-
the-shelf network interface cards (NICs). Although CSI can be
extracted with SDR implementations, which only support up
to 40 MHz of bandwidth, being only IEEE 802.11 a/g/p/n
compliant [50], [12]. Moreover, SDRs are costly specialized
hardware that may be unavailable in real-life situations and
require expert knowledge to be used. To overcome such
limitations, in recent years, researchers have developed some
CSI extraction tools that run on commercial Wi-Fi NICs. Two
of them, namely Linux CSI [6] and Atheros CSI [7], target
IEEE 802.11n compliant NICs (up to 40 MHz bandwidth).
The third one, Nexmon CSI [8], allows extracting the CFR
from some IEEE 802.11ac compliant devices, supporting
bandwidths up to 80 MHz. The most recent one, AX CSI [10]
is designed for IEEE 802.11ax devices and provides CFR
measurements also on 160 MHz bandwidth channels. These
tools, however, need non-trivial firmware modifications of the
NICs. Moreover, they do not provide support for estimating
the channel on MU-MIMO channels. Both when the CSI
extractor tool is implemented on one receiving Wi-Fi device
or on another monitor device, only the MIMO links between
the transmitter and the CSI collector is monitored, i.e., only
SU-MIMO mode is supported. This is a limitation of CSI-
based systems as MU-MIMO systems can provide way richer
information than SU-MIMO ones as they capture the correla-
tion of the propagated signal from different STAs relative to
the sensed subject. As a last consideration, Wang et al. [51]
recently pointed out the importance of the placement of the
CSI extractor device. Specifically, they showed that accurate
placement of the sensing devices can enhance the sensing
coverage by mitigating severe interference. Non-calibrated
placement of the sensing devices can severely hamper the
sensing quality.
Advantages of BeamSense. Our approach addresses these
challenges by exploiting the MU-MIMO beamforming feed-
back to sense the environment. The collection of the MU-
MIMO beamforming feedback packets can be done with any
standard-compliant 802.11 ac/ax device, and it does not need
any close proximity or direct access to the sensed subject.
As our system does not need any specific hardware or in-
frastructure, it facilitates mass deployment. Moreover, since it
utilizes the aggregated feedback from different users placed
at different locations, BeamSense is less sensitive to the
accurate placement of the STAs.

III. THE BEAMSENSE WI-FI SENSING SYSTEM

Figure 2 shows a high-level overview of BeamSense,
which leverages the channel estimation mechanism standard-
ized in IEEE 802.11 to sound the physical environment. The
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Fig. 2: The BeamSense Wi-Fi sensing system.

channel estimation is performed on the STAs (beamformees)
and is reported to the AP (beamformer) that uses it to properly
beamform MU-MIMO transmissions. The report is referred to
as the BFI and is transmitted over the air in clear text. Since
the AP continuously triggers the channel estimation procedure
on the connected STAs, the BFI contains very rich, reliable,
and spatially diverse information. Moreover, the BFI can be
collected with a single capture by the AP or any other Wi-Fi-
compliant device, thus reducing the system complexity.
BeamSense Technical Challenges. BeamSense is a com-
pletely novel way to perform Wi-Fi sensing. While previous
work in the literature deal with the well-known CSI data, we
instead consider the BFI as a sensing primitive. We stress that
BFI represents a completely new type of data. While CSI
consists of complex I/Q-values, BFI is expressed in terms
of compressed rotational matrices. In this respect, the first
challenge we need to address is the design and implementation
of a novel tool to extract the BFI data embedded within Wi-Fi
frames transmitted from the beamformees to the beamformer
as part of the channel sounding procedure. On top of that,
the second challenge concerns the implementation of a new
data processing pipeline for the new data type that effectively
performs activity classification based on BFI data and provides
environment adaptation features. The third challenge to be
addressed is the setup of an extensive experimental testbed
to implement and assess the performance of the new Wi-Fi
sensing approach in a real-world scenario with commercial
Wi-Fi devices.

In the following, we thoroughly detail the BeamSense
sensing system. We use the superscripts T and † to denote the
transpose and the complex conjugate transpose (i.e., the Her-
mitian). We define with ∠C the matrix containing the phases
of the complex-valued matrix C. Moreover, diag(c1, . . . , cj)
indicates the diagonal matrix with elements (c1, . . . , cj) on the
main diagonal. The (c1, c2) entry of matrix C is defined by
[C]c1,c2 , while Ic refers to an identity matrix of size c× c and
Ic×d is a c× d generalized identity matrix.

A. BeamSense: A Walkthrough

The BeamSense sensing system entails eight steps, as de-
picted in Figure 2. The process stems from the way beamform-
ing is implemented in IEEE 802.11 networks. Specifically, the
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beamformer (AP) uses a matrix W of pre-coding weights –
called steering matrix – to linearly combine the signals to
be simultaneously transmitted to the different beamformees
(STAs). The steering matrix is derived from the CFR matrices
H estimated by each of the beamformee and that describe
how the environment modifies the irradiated signals in their
path to the receivers. The estimation process is called channel
sounding and is triggered by the AP which periodically
broadcasts a null data packet (NDP) (step 1 in Figure 2) that
contains sequences of bits – named long training fields (LTFs)
– the decoded version of which is known by the beamformees.
Since its purpose is to sound the channel, the NDP is not
beamformed by the AP. This is particularly advantageous
for sensing purposes, since the resulting CFR estimation will
not be affected by inter-stream or inter-user interference. The
LTFs are transmitted over the different beamformer antennas
in subsequent time slots, thus allowing each beamformee to
estimate the CFR of the links between its receiving antennas
and the beamformer transmitting antennas. The LTFs are
modulated – as the data fields – through OFDM by dividing the
signal bandwidth into K partially overlapping and orthogonal
sub-channels spaced apart by 1/T . The input bits are grouped
into OFDM symbols, a = [a−K/2, . . . , aK/2−1], where ak is
named OFDM sample. These K OFDM samples are digitally
modulated and transmitted through the K OFDM sub-channels
in a parallel fashion thus occupying the channel for T seconds.
The transmitted LTF signal is

stx(t) = ej2πfct
K/2−1∑
k=−K/2

ake
j2πkt/T , (1)

where fc is the carrier frequency. The NDP is received and
decoded by each STA (step 2) to estimate the CFR H. The
different LTFs are used to estimate the channel over each pair
of transmitting (TX) and receiving (RX) antennas, for every
OFDM sub-channel. This generates a K × M × N matrix
H for each beamformee, where M and N are respectively
the numbers of TX and RX antennas. We refer the reader to
Section II for additional details about the CFR. Next, the CFR
is compressed – to reduce the channel overhead – and fed back
to the beamformer. Using Hk to identify the M×N sub-matrix
of H containing the CFR samples related to sub-channel k,
the compressed beamforming feedback is obtained as follows
([52], Chapter 13). First, Hk is decomposed through singular
value decomposition (SVD) as

HT
k = UkSkZ

†
k, (2)

where Uk and Zk are, respectively, N×N and M×M unitary
matrices, while the singular values are collected in the N×M
diagonal matrix Sk. Using this decomposition, the complex-
valued beamforming matrix Vk is defined by collecting the
first NSS ≤ N columns of Zk. Such a matrix is used by
the beamformer to compute the pre-coding weights for the
NSS spatial streams directed to the beamformee. Hence, Vk is
converted into polar coordinates as detailed in Algorithm 1 to

Algorithm 1: Vk matrix decomposition

Require: Vk;
D̃k = diag(ej∠[Vk]M,1 , . . . , e

j∠[Vk]M,NSS ) ;
Ωk = VkD̃

†
k;

for i← 1 to min(NSS,M − 1) do
φk,`,i = ∠ [Ωk]`,i with ` = i, . . . ,M − 1;
compute Dk,i through Eq. (3);
Ωk ← D†k,iΩk;
for `← i+ 1 to M do

ψk,`,i = arccos

(
[Ωk]i,i√

[Ωk]2i,i+[Ωk]2`,i

)
;

compute Gk,`,i through Eq. (4);
Ωk ← Gk,`,iΩk;

avoid transmitting the complete matrix. The output is matrices
Dk,i and Gk,`,i, defined as

Dk,i =



Ii−1 0 . . . 0
0 ejφk,i,i 0 . . . ...
...

0
. . . 0

... 0 ejφk,M−1,i 0
0 . . . 0 1

 , (3)

Gk,`,i =


Ii−1 0 . . . 0
0 cosψk,`,i 0 sinψk,`,i ......

0 I`−i−1 0
− sinψk,`,i 0 cosψk,`,i 0

0 . . . 0 IM−`

 ,
(4)

that allow rewriting Vk as Vk = ṼkD̃k, with

Ṽk =

min(NSS,M−1)∏
i=1

(
Dk,i

M∏
l=i+1

GT
k,l,i

)
IM×NSS , (5)

where the products represent matrix multiplications. In the
Ṽk matrix, the last row – i.e., the feedback for the M -th
transmitting antenna – consists of non-negative real numbers
by construction. Using this transformation, the beamformee is
only required to transmit the φ and ψ angles to the beamformer
as they allow reconstructing Ṽk precisely. Moreover, it has
been proved (see [52], Chapter 13) that the beamforming
performance is equivalent at the beamformee when using Vk

or Ṽk to construct the steering matrix W. In turn, the feedback
for D̃k is not fed back to the beamformer. The angles are
quantized using bφ ∈ {7, 9} bits for φ and bψ = bφ − 2 bits
for ψ, to further reduce the channel occupancy. The quantized
values – qφ = {0, . . . , 2bφ − 1} and qψ = {0, . . . , 2bψ − 1} –
are packed into the compressed beamforming frame (step 3)
and such beamforming feedback information (BFI) is trans-
mitted to the AP (step 4) in clear text. Each BFI contains A
number of angles for each of the K OFDM sub-channels for a
total of (K ·A) angles each. In Figure 3, we show an example
of how beamforming is conducted in a 3× 2 MIMO system.
BeamSense captures the BFI reports (step 5), and uses

the channel estimation data to perform Wi-Fi sensing. We
remark that, since MU-MIMO requires fine-grained channel
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Fig. 3: Example of 3× 2 MIMO system. s1, s2 and r1, r2 are
respectively the transmitted and received signals. The symbol
W indicates the steering matrix, while H is the CFR.
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Fig. 4: BFI data processing. The processing is applied to each
observation window of W seconds.

sounding – every around 10 milliseconds to account for user
mobility, according to [53] – it is fundamental to process the
BFI in a fast manner at the AP. For this reason, and since
cryptography would lead to excessive delays, the angles are
currently sent unencrypted. Therefore, the BFI reports are
exposed to and can be read by any device that can access
the wireless channel. Specifically, BeamSense relies on the
BFI transmitted by all the beamformees in the environment
and captured during a time window of W seconds to reliably
estimate the activity being performed by a human moving
within the propagation environment. This is done by using
the BFI samples collected within the window as input for a
learning-based algorithm (detailed in Section III-B). Note that,
as BeamSense leverages ongoing MU-MIMO transmissions,
there is no guarantee that the same number of BFI frames are
collected within a specific time interval of W seconds. This is
related to the fact that we have no control on when the beam-
former triggers the channel sounding procedure that generates
BFI data. Therefore, as the neural network-based classification
algorithm requires the input to be of a fixed dimension, we
need to determine a fixed-size input that represents the BFI
reports captured during the time window. The processing is
applied just after having collected the data on the wireless
channel (grey box in Figure 2) and is summarized in Figure 4.
Specifically, we consider the average number S of BFI packets
counted (at training time) in each window during an activity

recording. Windows having less than S packets are padded
with BFI packets containing zero-valued angles while packets
exceeding such threshold are discarded. Hence, the K × A
BFI angles contained in each packet are extracted and the
final tensor is obtained by aggregating the S ×K ×A angles
for all the U MU-MIMO users for which the BFI data have
been captured in the observation window. Note that even if it
would be possible to define learning algorithms that accept
input of different sizes, this would lead to an increase in
the complexity of the approach, both from the training and
inference perspective. Therefore, to keep the model simple for
implementation on memory- and battery-constrained devices,
we decided to follow a fixed-input approach.

To obtain the training data, the S×K×A×U tensors derived
from the BFI packets captured during the data collection phase
are stored in a dataset, together with their associated activity
and/or phenomenon, and a timestamp (step 6 in Figure 2).
This phase can be performed offline by sensing application
vendors without requiring the users’ cooperation. The trained
model (step 7) is then used for online sensing (step 8).
As mentioned in [53], the MU-MIMO sounding procedure
should be performed at least every 10 ms, which corresponds
to 100 BFI measurements/second. Since the frequency of
channel sounding is not specified in the standard and since the
sounding measurement lasts approximately 500 microseconds,
the BFI rate can theoretically reach 2000 BFI per second.
Example. Let assume the activity recording is 300 seconds
long, and W is 0.1 seconds. Then, 3000 windows are present
in the recording. Let us assume that the average number of
packets in the considered windows is S = 10. The windows
presenting less than 10 packets are zero-padded. Considering a
bandwidth of 80 MHz, according to the IEEE 802.11 standard,
four angles describe each of the K = 234 sub-channels where
sounding is performed, i.e., the total number of OFDM sub-
channels (256) minus pilots and control sub-channels that are
excluded from the sounding procedure. Assuming that U =
3 users are connected to the AP, the resulting input tensor
has dimensions 10× 234× 4× 3, and presents a total size of
10 · 234 · 4 · 3 = 28080.

B. The FAMReS Classification Algorithm

Existing research in CSI-based sensing has exposed that
designing classifiers that are robust to changing the subject
performing the activity (i.e., different people) and the envi-
ronment where the activity is performed (i.e., different rooms)
is very challenging [43], [44], [13], [12]. On the other hand,
it is hardly feasible to collect a large amount of data for
all possible scenarios. To address this key issue, we propose
a deep learning (DL)-based algorithm for BFI-based activity
classification called Fast and Adaptive Micro Reptile Sensing
(FAMReS), which is a few-shot learning (FSL) algorithm
based on Reptile [54] which needs a limited set of new input
data to generalize to unseen environments.

FSL is a DL technique that leverages only small amounts of
additional data to adapt to classes that are unseen at training
time. Specifically, in K-way-N-shot FSL, the model is trained
on a set of mini-batches of data that only have K different
classes (ways) and N samples (shots) of each class. The key
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Fig. 5: Example of Few-Shot Learning.

idea is that by feeding less data, the model is spurred to
rapidly adapt to new tasks. This unique property makes FSL a
strong candidate to tackle the diversity of environments. FSL
can be categorized into embedding learning [55], [56], and
meta-learning [54], [57], among others. Specifically, Reptile
is a gradient-based meta-learning algorithm that learns the
model parameter initialization for rapid fine-tuning. The key
idea is that there are some common features between different
tasks that can be learned through meta-learning. Therefore,
the model can be fine-tuned on a new task faster with the
meta-learned weights instead of training it from the beginning.
To find the initialization weights θ∗, Reptile minimizes the
expectation of the loss function Lτ with respect to the different
tasks τ , i.e.,

θ∗ = min
θ

Eτ {Lτ [f (x, y|θ)]} , (6)

where f(x, y|θ) is the model functional approximation be-
tween input data x and output y obtained with parame-
ters θ. This is equivalent to finding the θ∗ that satisfies
Eτ {∇θ (Lτ [f (x, y|θ)])} = 0 via, e.g., stochastic gradient
descent (SGD). SGD finds θ∗ through an iterative procedure,
by subsequently updating the value of θ with a new value θ′

based on the gradient information:

θ′ = θ − β 1

n

n∑
τ=1

(
1

m

m∑
i=1

∇θ (Lτ [f (xi, yi|θ)])

)
(7)

= θ − β 1

n

n∑
τ=1

(
θ − θ̃

)
, (8)

where n and m denote the number of tasks and sampled data
points of each task, respectively, β is a scalar denoting the
step size, and θ̃ = θ − α 1

m

∑m
i=1∇θ (Lτ [f (xi, yi|θ)]) are

the updated weights using m sampled data from τ , where
α denotes the learning rate. θ̃ can be easily obtained using
any deep learning API such as TensorFlow and PyTorch. The
meta-learning proceeds through the following steps: (i) sample
n new tasks {τ} with m data of each task (for K-way-N-shot,
m is the product of K and N); (ii) compute θ̃; (iii) update θ
with Equation 8; (iv) iterate (ii) and (iii) until the loss function
stops decreasing. Figure 5 shows how FSL is implemented
through the Reptile algorithm: once obtained the initialization
weights θ∗ through meta-learning, the model is fine-tuned on
each different task.

1) FAMReS Algorithm: The original purpose of Reptile is
to extract meta-features from a large dataset so that it can be

quickly fine-turned when a new task is sampled from the given
dataset. However, Reptile requires the inference and meta-
learning data to be sampled from the same dataset. Such a
dataset should contain as many classes as possible so that
the meta-learner can extract the general characteristics and
fine-tune a task with fewer classes. Since this is unfeasible
in BFI-based sensing, we find some common ground between
meta-learning and general DL. The aim of learning is trying
to approach the ground truth between different sampled data,
while meta-learning is to find shared features between various
tasks. Thus, if we consider each batch of training data as a new
task in meta-learning, the learning problem can be converted
into a meta-learning problem. Formally, we aim to find a set
of parameters θ∗ that minimize the loss function L on training
data xi and yi:

θ∗ = min
θ

Ei {L [f (xi, yi|θ)]} . (9)

By plugging the derivative Ei {∇θ (L [f (xi, yi|θ)])} to the
SGD optimizer, the optimization problem can be solved as

θ̃ = θ − α 1

m

m∑
i=1

∇θ (L [f (xi, yi|θ)]) . (10)

By comparing Equation 7 with 10, we can easily find that if
we set n = 1 in Equation 7, the only difference between these
two equations is a constant scalar. Based on this observation,
we note that Reptile learns common ground from different
mini-batch of data. The meta-learning rate β, which is usually
a scalar less than 1, is to adjust the step size of the learning,
making it less likely to overfit the mini-batch data. This meta-
learning process can be regarded as a warm-up phase before
learning, which makes the parameters θ closer to the ground
truth in the hyperspace than random initial weights.

Inspired by this idea, FAMReS is divided into two stages:
(i) meta-learning stage; and (ii) micro-learning stage. In stage
(i), the model utilizes a small portion of data to learn the
shared features. In stage (ii), the same micro dataset is used
for training. The complete FAMReS workflow is reported in
Algorithm 2. We stress the difference between the original
Reptile and FAMReS: we only use a small portion of data in
meta-learning and micro-learning and use other unseen data
for testing. On the contrary, Reptile uses the same dataset
for both learning and inference. Although we have only
done experiments offline in this work, FAMReS is a strong
candidate for online learning. The algorithm can run the meta-
learning phase while collecting new data. Once there is enough
data, it can move on to the next stage. Therefore, we define
a time variable δ in experiments to simulate the real-time
implementation. We use the data collected within the δ time
window for learning and the other for inference. FAMReS is an
empirical risk minimizer that can be unstable when using small
values for δ, depending on the distribution of training data.
Meta-learning on the micro dataset can only bring the initial
parameters closer to the ground truth point in the hyperspace,
but the final parameters still depend on the training set. Thanks
to the high stability of the BFI data, we can always get a
reasonable accuracy in the experiments unless δ is extremely
small.
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Algorithm 2: The FAMReS Algorithm

Require: step size β, micro dataset D;
Initialize: a set of parameters θ;
for iteration = 1, 2, ... do

sample k points of data from D ; /*stage i*/
compute θ̃ using the SGD formulation;

update the parameters: θ ← θ + β
(
θ̃ − θ

)
;

for epoch = 1, 2, ... do
update θ running SGD on D; /*stage ii*/
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Fig. 6: Learning-based activity classifier.

2) Learning Architecture: In the last decade, convolutional
neural networks (CNNs) have achieved tremendous success in
computer vision [58], [59], [60]. The convolution layer, the
basis of CNNs, can efficiently extract features by performing
convolution operations on the elements of the input data. Given
that in this article our aim is to investigate the effectiveness
of BFI-based sensing as compared to CSI-based sensing, we
propose to use a VGG-based [59] CNN architecture as the hu-
man activity classifier. The network is depicted in Figure 6 and
entails stacking three convolutional blocks (conv-block)
and a max-pooling (MaxPool) layer. Softmax is applied to
the flattened output to obtain the probability distribution over
the activity labels.

The conv-block is a stack of two convolution two-
dimensional (2D) layers. Following the design of VGG [59],
each convolution layer has a kernel size of 3 × 3 and a step
size of 1. To introduce non-linearity in the model, we apply
a rectified linear units (ReLU) activation function at the end
of each conv-block. Batch normalization is also used in
conv-blocks to avoid gradient explosion or vanishing. Our
VGG-based CNN consists of three conv-blocks with 128,
64 and 32 filters, respectively. We choose a descending order
of filters to reduce the model size since features in lower layers
are usually sparser and thus require extracting more activation
maps to be properly captured.

IV. PERFORMANCE EVALUATION

A. Experimental Setup and Data Collection

We collected experimental data in three environments: a
kitchen, a living room, and a classroom, as depicted in
Figure 7. We considered three human subjects and twenty
different activities: jogging, clapping, push forward, boxing,
writing, brushing teeth, rotating, standing, eating, reading a

Classroom Living Room

Kitchen

Activity Zone

Access Point

Fig. 7: Sites of experimental data collection.

Fig. 8: Sample frames from the video capture.

book, waiving, walking, browsing phone, drinking, hands-up-
down, phone call, side bend, check the wrist (watch), washing
hands, and browsing laptop. The activities are performed
independently by each subject within a designated rectangular
region in each of the three environments. Both BFI and
CSI data is collected for the same duration of 300 seconds
for each of the twenty activities. To create the ground
truth, we captured the synchronous video streams of the
subjects performing the activity. The video streams are
synchronized with the data to show what the subject is doing
during the transmission of the NDP frame triggering the BFI
computation. As an example, three frames from the captured
video streams are shown in Figure 8.
MU-MIMO Setup and Equipment. We set up an 802.11ac
MU-MIMO network operating on channel 153 with center
frequency f c=5.77 GHz and 80 MHz bandwidth. This al-
lows sounding K=234 sub-channels, i.e., 256 available sub-
channels on 80 MHz channels minus 14 control sub-channels
and 8 pilots. We use one AP (beamformer) and three STAs
(beamformees), as depicted in Figure 9 in orange. The AP
and the STAs are implemented through Netgear Nighthawk
X4S AC2600 routers with M=3 and N=1 antennas enabled
respectively for the AP and each of the STAs. The three STAs
are served with N ss = 1 spatial stream each and placed at
three different heights and significantly spaced from each other
to form a 3 × 3 MU-MIMO system. According to the IEEE
802.11ac standard, four beamforming feedback angles (two
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Fig. 9: Experimental setups for data collection.

φ and two ψ) are needed to represent each of the 3 × 1
channels between the AP and the STAs. In our setup, the
angle quantization process uses bφ= 9 bits and bψ =7 bits
for the feedback angles φ and ψ respectively. UDP data
streams are sent from the AP to the STAs in the downlink
direction to trigger the channel sounding. The BFI frames
are captured with the Wireshark network protocol analyzer
running on an off-the-shelf laptop equipped with an Intel
9560NGW wireless-AC NIC set in monitor mode. However,
note that any IEEE 802.11ac-compliant NIC set in monitor
mode could be used for this purpose. Moreover, notice that
the frame-capturing device does not need any direct link with
the AP or the STAs. The only requirement is that the capture
is performed on the wireless channel where the Wi-Fi network
is operating. From the captured frames, the φ and the ψ
angles are extracted for each of the STAs and used as input
to the BeamSense learning framework (see Section III-B).
Figure 10 shows a sample taken from our dataset. We plot the
magnitude of the four collected beamforming angles for each
of the 234 available sub-channels, for ten different packets and
four activities. Figure 10 remarks that the absolute values of
the angles change quite significantly among different activities,
while do not change significantly among different packets.
This indicates that BFI-based sensing is a stable measurement
of the channel propagation environment and thus, a strong
candidate to be used within Wi-Fi sensing systems.
CSI Network Setup and Equipment. For comparative stud-
ies, CSI data has also been collected concurrently with the BFI
frame capture. For this purpose, a Wi-Fi network consisting of
an AP (referred to as CSI AP) and a single STA (referred to as
CSI client) has been set up within the same environments, as
depicted in Figure 9 in blue. The network operates on the IEEE
802.11ac channel 42, i.e., the center frequency is fc = 5.21
GHz and the bandwidth is 80 MHz. The AP is implemented
with a Netgear Nighthawk X4S AC2600 router, while the
CSI client is a PC APU2 board equipped with an Intel
9560NGW wireless-AC NIC. For the CSI extraction, three

(a) Browsing phone (b) Walking

(c) Drinking water (d) Boxing

Fig. 10: BFI angles for each sub-channel for four activities.
Each plot shows the values of 10 different packets (super-
imposed lines with different colors). The x-axis reports the
indices of the sensed sub-channels.

IEEE 802.11ac-compliant Asus RT-AC86U routers (referred
to as CSI monitors) equipped with the Nexmon CSI extraction
tool ([8]) have been deployed, as depicted in Figure 9 in green.
To have the same setup as in the MU-MIMO network, the CSI
AP is enabled with M = 3 antennas whereas the CSI monitors
are set up to sense the channel through N = 1 antenna over
Nss= 1 spatial stream each. UDP packets are sent from the
CSI AP to the CSI client to trigger the channel estimation on
the three CSI monitors.

Note that, as shown in Figure 9, the CSI AP and one of
the CSI monitors (M1) are respectively placed at the same
location as the MU-MIMO AP and one of the stations (ST1)
to allow for baseline performance comparison. To show the
challenges of using CSI-based sensing, we place both the BFI
capturing device and the CSI monitors M2 and M3 beyond
the wall of the activity zone. The CSI monitor captures the
channel between itself and the CSI AP, and, in turn, the
performance decrease when CSI collectors are placed far from
the monitored environment, as detailed in Section IV-B1.

B. Performance Analysis

In the following, all the results are obtained with a time
window size of 0.1 s with ten packets/sample with the data of
three subjects combined, unless specified otherwise.

1) Comparison between BFI and CSI-based Sensing:
Figure 11 shows the classification accuracy of BeamSense as
compared to the state-of-the-art CSI-based SignFi algorithm
[61] in the three environments. For a baseline comparison,
we only consider M1 and ST1 as the CSI collection device
and BFI STA respectively which are co-located. We first
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Fig. 12: Conf. matrices for BeamSense and SignFi.

evaluate the performance of BFI and CSI-based sensing using
the minimalist data processing and the CNN architecture as
referenced in Figure 4 and Figure 6 respectively. The accuracy
of BeamSense in the kitchen, living room and classroom is
respectively 96%, 99%, and 95.47% whereas SignFi reaches
81.19%, 87.99%, and 84.08% of accuracy respectively, result-
ing in a 12.6% accuracy decrease on average. We also show the
performance of SignFi with the processing pipeline presented
in [61], which unwraps the phase of each collected signal and
then removes the phase noise by multiple linear regression
based on the unwrapped phase across all sub-carriers and
antennas. The classification accuracy improves to 91.34%,
93%, and 90% in the kitchen, living room, and classroom
environments, respectively. Yet, BeamSense achieves better
performance with no data preprocessing.

To shed light on which classes are the hardest to classify
with CSI-based sensing, Figure 12 shows the confusion ma-
trices obtained in the kitchen using BeamSense and SignFi
without the custom pre-processing. The bottom five classes are
browsing laptop (index 20), phone call (16), hands-up-down
(15), clapping (02), and boxing (04), which are indeed among
the hardest classes to distinguish.

Figure 13 shows the performance of BeamSense and
SignFi with pre-processing evaluated in the kitchen as a
function of the CSI capture location, the BFI capture location,
and the window size W . Whereas CSI data acquired through
M1 provides acceptable results since M1 is very close to the
activity zone, data acquired with M2 and M3 provides poor
results as M2 and M3 are far from the activity zone and
beyond a wall. Specifically, the accuracy drops by 94.13%
considering an observation window size of W = 0.1 s. On the
contrary, the performance of BeamSense does not change
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Fig. 13: BeamSense and SignFi performance changing the
capture location and the window size.
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Fig. 14: Impact of the spatial diversity.

with the location of the BFI collector. Moreover, in the case of
CSI-based sensing, we also observe a significant performance
variation when varying the window size W . For SignFi, with
the variation of the window size, the accuracy varies by
47.37% on average, which is only 1.36% for BeamSense.
This proves that feedback angles are a much more stable
and reliable measurement than CSI.

2) Performance as a Function of the Spatial Diversity:
Figure 14 presents the performance of BeamSense when
trained with data from a single STA and with the combined
data. First, we notice that the single STA data is almost always
a very stable measurement, with the accuracy remaining high
in most of cases. However, we notice that some STAs perform
worse than others, especially ST2 in the kitchen, and ST2 and
ST3 in the classroom. Indeed, due to the physical location
of these STAs, the communication channels between them
and the AP might be in deep fade causing BeamSense to
perform poorly. However, by aggregating the spatially diverse
STA data, the overall accuracy is improved by up to
43.81% in the classroom. Given the variability of the Wi-Fi
channel, considering different STA locations imply obtaining
completely different angles for the same activity, even in
the same environment, as shown in Figure 14. To further
investigate the sensing performance as a function of the STA
location, we conduct an experiment in the kitchen entailing
three different STA locations as depicted in Figure 15. The
first placement is referred to as “Setup 1” while “Setup
2” and “Setup 3” are obtained by physically rotating each
STA by 20°clockwise, which corresponds to placing the STA
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around 2 meters away from the previous location. Figure 16
shows the accuracy of BeamSense in the kitchen when using
data collected through each of the three setups. BeamSense
performs very well when combining all the STAs: the accuracy
is 99.53%, 99.46%, and 99.23% respectively in Setup 1, Setup
2 and Setup 3. Therefore, multi-STA sensing should be
preferred over single-STA sensing whenever possible.

3) Evaluation of Angle and Sub-Channel Resolution: It
is known that Wi-Fi sensing performs worse when lowering
the number of sub-channel considered in the sensing process
[62], [31]. Extensive feature extraction or higher sampling
frequency can be utilized, at the cost of increasing the compu-
tational burden and intensifying pre-processing steps, as well
as increasing the computational complexity of the learning
process. For this reason, we investigate the trade-off between
the number of angles and sub-channels considered for sensing
and the sensing performance.

Figure 17 shows the accuracy of BeamSense as a function
of the number of sub-channels utilized in the learning process.
To down-sample the sub-channels, we take the first 20, 40, 80,
and 160 sub-channels, to emulate sensing systems with smaller
available bandwidths. As expected, the accuracy decreases
by 6.31%, 3.80%, and 3.46% respectively for the kitchen,
living room, and classroom when we switch from 234 to 20
sub-channels. However, notice that this operation drastically
decreases the input tensor dimension from 10 × 234 × 12 =
28080 to 10 × 20 × 12 = 2400, implying that sub-channel
resolution decreases the computational burden by 10× while
maintaining the accuracy above 92% in all the considered
scenarios.

Figure 18 shows BeamSense performance as a function
of the number of angles considered for sensing. STA1 is
considered for angle 1, angle 2, angle 3, angle 4, and the
combination of four angles, whereas STA1 and STA2 are
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Fig. 17: BeamSense accuracy as a function of the number
of sensed sub-channels.
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Fig. 18: BeamSense accuracy as a function of the number
of the angles considered.

considered for the combination of eight angles, and all three
stations are considered for the combination of 12 angles.
Figure 18 shows that the accuracy decreases by 1.98%,
0.16%, and 2.22% in the kitchen, living room and classroom
respectively when considering a single angle with respect
to the combination of 12 angles. Even though the above
results show no significant variation in performance even if
the angle resolution is decreased from 12 angles combined to
any individual angle, we suggest aggregating at least the angles
of two spatially diverse STAs to obtain a robust algorithm.

4) Evaluation of CNN Filter Size: To further investigate
the trade-off between computation complexity and accuracy,
we introduce a width multiplier α ∈ (0, 1] to each layer of the
CNN-based classifier. For a given number of input channels
C and output channels Z, they become αC and αZ after
applying the multiplier. Hence, the computation complexity
will be reduced by α2 roughly. Applying the width multiplier
α to BeamSense, the channel size of each conv-block
becomes α × 128, α × 64, α × 32, respectively. Figure
19 shows how the accuracy changes when applying width
multiplier α ∈ {0.07, 0.13, 0.25, 0.5, 0.75}. BeamSense ac-
curacy, averaged over the three environments, is 97.22%,
98.01%, 98.62%, 98.88%, and 99.02%, respectively. As the
CNN width decreases from 0.75 to 0.07, the accuracy
drops marginally by 1.8%. This observation indicates that
BeamSense can adapt to limited computation resources and
latency-sensitive cases by sacrificing little accuracy.

C. Evaluation of FAMReS Algorithm

To address the challenge of generalization to unseen envi-
ronments and subjects, we have proposed FAMReS in Section
III-B1. We compare the performance of FAMReS with the
state-of-the-art FSL algorithm OneFi[44] and the transfer
learning (TL) algorithm presented in WiTransfer[63] for cross-
domain WiFi sensing. Figure 20(a) shows that with only 15 s
of new data, FAMReS can adapt to new environments with
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Fig. 19: BeamSense accuracy as a function of the number
of the CNN filter sizes.

an average accuracy of 94.97%, 90.51% and 93.09% when
trained in the kitchen, living room, and classroom respectively.
On the other hand, WiTransfer achieves 13.4%, 18.02%, and
16.52% respectively, which is 76.88% less than FAMReS. The
reason is that the WiTransfer pre-trained model is optimized
for a specific task. Conversely, transfer learning approaches
usually require more data to get rid of the data bias and 15s of
new data is not enough for WiTransfer to achieve satisfactory
accuracy. OneFi achieves an accuracy of 64.72%, 63.36%,
and 63.24% respectively in the kitchen, living room, and
classroom. Although it can generalize to new environments to
some extent, FAMReS performs better since it can fine-tune
the whole model and learn shared information across different
tasks by meta-learning. On the contrary, OneFi utilizes infor-
mation from one task and only fine-tunes the classifier. Figure
20(b) shows a similar trend, where FAMReS is 73.41% better
than WiTransfer and 24.81% better when compared to OneFi
on average. We also evaluated the performance of FAMReS as
a function of different setups as discussed in Section IV-B2.
Figure 20(c) shows that FAMReS achieves an accuracy of
90.93%, 94.38%, and 93.20% when trained in setup 1, setup
2, and setup 3 respectively, and tested in the other setups.
FAMReS supersedes WiTransfer and OneFi by 74.88% and
27.28% respectively with new unseen setups too.

Finally, we investigate the performance of FAMReS as a
function of the additional micro-dataset δ required to general-
ize to new environments and/or subjects. Figure 21 shows the
performance of the different considered sensing algorithms as
a function of the micro dataset size δ. The results show that
as δ decreases from 30 s to 10 s, the accuracy of FAMReS
only drops by 5.30% and 11.13% on average when tested in
unseen environments and subjects respectively. On the con-
trary, the performance of WiTransfer drops significantly when
the duration of micro dataset δ is reduced to 10 s, showing
that without the meta-learning phase, transfer learning requires
more data for adaptation. Although OneFi is more stable
than WiTransfer, the accuracy decreases to only 52.26% and
43.92% respectively with unseen environments and subjects,
which is 39% less than FAMReS. This proves the performance
gain that FAMReS achieves by fine-tuning the whole network
rather than fine-tuning only the classifier like OneFi.

V. CONCLUSIONS AND REMARKS

In this article, we have proposed BeamSense, a novel
approach to Wi-Fi sensing based on the usage of MU-MIMO
beamforming feedback information (BFI). Conversely from
CSI-based approaches, (i) the BFI can be easily recorded by
off-the-shelf devices without MIMO capabilities and without
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Fig. 20: Comparative analysis of BeamSense in unseen
environments, subjects and orientations.
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Fig. 21: Comparative analysis of BeamSense as a function
of micro dataset, δ.

any firmware modification; (ii) the BFI captures in a single
packet the multiple channels between the AP and the STAs,
thus achieving a much better sensing granularity. BeamSense
includes a few-shot learning (FSL)-based classification algo-
rithm to adapt to new environments and subjects with few
additional data. We have evaluated BeamSense through an
extensive data collection campaign involving three subjects
performing twenty different activities in three indoor envi-
ronments. We have compared our approach with traditional
CSI-based sensing approaches and show that BeamSense
improves the accuracy by 25% on the average, while our
FSL-based approach improves accuracy by up to 51% when
compared with state-of-the-art domain adaptive sensing mod-
els. We hope that this work will pave the way for additional
research on BFI-based Wi-Fi sensing.
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