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Abstract—In this paper, we propose BFA-Sense, a completely
novel approach to implement standard-compliant Wi-Fi sensing
applications. Wi-Fi sensing enables game-changing applications
in remote healthcare, home entertainment, and home surveil-
lance, among others. However, existing work leverages the man-
ual extraction of the uncompressed channel state information
(CSI) from Wi-Fi chips, which is not supported by the 802.11
standard-compliant devices and hence requires the use of special-
ized equipment. On the contrary, BFA-Sense leverages the com-
pressed beamforming feedback angles (BFAs) transmitted dur-
ing the standard-compliant sounding procedure to characterize
the propagation environment. Conversely from the uncompressed
CSI, BFAs (i) can be recorded without any firmware modifica-
tion, and (ii) allows a single monitor device to simultaneously
capture the channels between the access point and all the stations,
thus providing much better sensitivity. We evaluate BFA-Sense
through an extensive data collection campaign with three subjects
performing twenty different activities in three different environ-
ments. We assess the cross-domain adaptability of BFA-Sense
through embedding learning for tackling unseen environments
with a few samples from the new environment. The results show
that the proposed BFAs-based approach achieves about 11% more
accuracy when compared to CSI-based prior work.

Index Terms—Wi-Fi sensing, multiple-input multiple-output
(MIMO), beamforming, beamforming feedback angles.

I. INTRODUCTION

Wi-Fi human sensing aims at detecting the changes in the
propagation of Wi-Fi signals and associating them to the way a
subject stays/moves in the environment, thus enabling device-
free monitoring solutions [1]–[3]. To date, the vast majority
of Wi-Fi sensing systems – discussed in Section II – leverage
channel measurements obtained from pilot symbols as sensing
primitive. Such measurements – referred to as channel state
information (CSI) – describe the way the signals propagate in
the environment. Despite leading to good performance, CSI-
based techniques require extracting and recording the uncom-
pressed CSI estimated by the Wi-Fi devices. However, this
operation is currently not supported by commercially available
IEEE 802.11 devices. To enable CSI-based sensing, researchers
have introduced custom-tailored firmware modifications that
allow extracting the CSI [4]–[6]. These CSI extraction tools
only provide support for single-user multiple input multiple
output (SU-MIMO) sensing as the channel is sounded on the
link between the transmitter and the device implementing the
firmware modifications. Therefore, Wi-Fi sensing approaches
relying on CSI extraction tools cannot benefit from the spatial
diversity that can be gained through multi-user multiple input
multiple output (MU-MIMO) transmissions. Spatial diversity

may be achieved considering multiple CSI collectors but this
would increase the computation burden as synchronization
among the devices would be needed. Moreover, even if CSI
extraction could be supported in the future without the need for
custom-tailored firmware modifications, it would require addi-
tional processing to extract data from the chip, thus increasing
energy consumption. Therefore, we argue that more suitable
approaches to Wi-Fi sensing should be put forward.

In this paper, we propose BFA-Sense, an entirely new
approach to Wi-Fi sensing that leverages the MU-MIMO ca-
pabilities of Wi-Fi to drastically increase sensing performance
while substantially reducing the related overhead. As shown in
Figure 1, BFA-Sense leverages the compressed beamforming
feedback information (BFI) – i.e., the beamforming feedback
angles (BFAs). This is periodically transmitted for multiple-
input multiple-output (MIMO) operations – to sense the prop-
agation environment between the access point (AP) and the
connected stations (STAs).

Access
Point

MU-MIMO 
Beamformees

Access 
Point

CSI 
Collectors

CSI 

CSI 

Beamforming 
Feedback 

Requires specialized equipment
 Requires Direct Access to Devices

Introduces additional overhead

No specialized equipment
No Direct Access Required

No additional overhead

Fig. 1: CSI-based vs BFI-based Wi-Fi sensing.

In stark contrast to CSI-based sensing, BFA-Sense (i) does
not need firmware modifications, (ii) does not require synchro-
nization among different devices, since a single monitor device
can capture the information about all the MIMO channels
established between the AP and the STAs. Since BFAs frames
are sent unencrypted to keep the processing delay below a few
milliseconds, any off-the-shelf Wi-Fi device can capture and
decode them without any firmware modification [7]. Unlike
CSI extraction tools that focus on a single MIMO channel,
while capturing the BFAs we obtain the information associated
with all the STAs involved in a MU-MIMO transmission. Thus,
with BFAs-based approach, multiple spatially diverse channel
information is collected with a single capture. In summary, this
paper provides the following contributions:
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• We propose BFA-Sense, a new approach to Wi-Fi sensing
where the standard-compliant BFAs routinely sent in MU-
MIMO Wi-Fi networks is used to characterize the propagation
environment. To the best of our knowledge, this is the first work
proposing the utilization of BFAs for sensing;

• We developed an embedding learning model for activity clas-
sification to quickly adapt the classifier to new environments
with few additional data points;

• We extensively evaluate BFA-Sense through a comprehen-
sive data collection campaign, with three subjects performing
twenty different activities in three different environments. We
used commercial IEEE 802.11ac Wi-Fi devices to set up a MU-
MIMO network. The network was synchronized with a camera-
based system to record the activity’s ground truth during the
experiments.

We show that the proposed BFAs-based approach achieves
about 10% more accuracy when compared to state-of-the-art
CSI-based techniques. Moreover, leveraging embedding learn-
ing BFA-Sense reaches, on average, up to 65% of accuracy
in adapting the activity classifier to new environments. For
reproducibility, the entire dataset along with the code repository
is shared at https://github.com/kfoysalhaque/BFA-Sense

II. RELATED WORK

Over the last ten years, a lot of efforts have been made to
explore wireless sensing solutions, as summarized by Liu et
al. in [8]. The first Wi-Fi sensing approaches were based on
the received signal strength indicator (RSSI) [9]. More recently,
researchers have focused on the more fine-grained CSI informa-
tion that describes how the wireless channel modifies signals at
different frequencies rather than providing a cumulative metric
on the signal attenuation as the RSSI does.

Limitations of CSI-based Sensing. The CSI is computed at the
physical layer (PHY) and is currently not made available to the
end-user in commercially available devices. To overcome this
limitation, in recent years, researchers have developed some
CSI extraction tools that modify the firmware of specific de-
vices to unveil the information of interest. Two of them, namely
Linux CSI and Atheros CSI, target IEEE 802.11n compliant
network interface cards (NICs), for up to 40 MHz of band-
width [4], [10]. Nexmon CSI, allows extracting the CSI from
some IEEE 802.11ac compliant devices, supporting bandwidths
up to 80 MHz [5]. The most recent tool, AX CSI is designed for
IEEE 802.11ax devices and provides CSI measurements also on
160 MHz channels [11]. These tools, however, need non-trivial
firmware modifications of the NICs.

Recent BFI-based Sensing Approaches. BFI is gaining mo-
mentum in the research community as a proxy to the CSI as it
provides spatially diverse rich channel information from Wi-Fi
compliant devices without any firmware modification or direct
access to the hardware. Wi-BFI [12] is one of the first tools to
extract BFAs and reconstruct BFI in the form of beamforming
matrices Vk.

Jiang et al. demonstrated how the design and computation
of the beamforming feedback matrix affects the sensing per-

formance [13]. Kondo et al. evaluate the performance of uni-
directional and bi-directional beamforming on Wi-Fi sensing
through the BFI reconstructed from BFAs [14]. The same
authors leveraged the BFI for respiratory rate estimation [15].
However, all these work considers the BFI matrices recon-
structed from BFAs which introduces additional preprocessing,
system latency, and computational burden for the sensing sys-
tem. On the contrary, BFA-Sense is based on the compressed
BFAs which are directly captured from ongoing transmissions
and do not need any pre-processing.

III. THE BFA-SENSE SYSTEM

BFA-Sense leverages the channel estimation mechanism
standardized in IEEE 802.11ac/ax to sound the physical envi-
ronment, as summarized in Figure 2 and detailed in the next
part of this section. The channel estimation is performed on the
STAs (beamformees) and is reported to the AP (beamformer)
that uses it to properly beamform MU-MIMO transmissions.
The report is transmitted over the air in the form of BFAs
in clear text. Since the AP continuously triggers the channel
estimation procedure on the connected STAs, the BFAs contains
very rich and spatially diverse information. Moreover, the
reports from different beamformees can be collected with a
single capture by any Wi-Fi-compliant device, thus reducing
the system complexity.
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Fig. 2: The BFA-Sense Wi-Fi sensing system.

BFA-Sense Technical Challenges. We stress that BFAs rep-
resent a completely new type of data to perform Wi-Fi sensing.
While CSI consists of complex I/Q-values, BFAs are expressed
as integer numbers derived by compressing and quantizing
the CSI information. In this respect, we needed to implement
a novel data processing pipeline for the new data type that
effectively performs activity classification based on BFAs data
and provides adaptation capabilities for new environments. In
the following, we detail the BFA-Sense sensing system.

A. BFA-Sense: A Walkthrough

The BFA-Sense sensing system consists of eight steps, as
depicted in Figure 2. The process stems from the way beam-
forming is implemented in IEEE 802.11 networks (steps 1-4).
Hence, steps 5-8 are the core of BFA-Sense and empower the
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Wi-Fi system with sensing capabilities. In the following, the
entire pipeline is detailed.

In MU-MIMO, the beamformer (AP) uses a precoding ma-
trix to linearly combine the signals to be simultaneously trans-
mitted to the different beamformees (STAs). The precoding
matrix is derived from the CSI matrices H, estimated by each
of the beamformees and that describe how the environment
modifies the irradiated signals in their path to the receivers. The
estimation process is called channel sounding and is triggered
by the AP which periodically broadcasts a null data packet
(NDP) (step 1 in Figure 2). The NDP contains sequences of
bits – named long training fields (LTFs) – the decoded version
of which is known to the beamformees. Since its purpose is
to sound the channel, the NDP is not beamformed by the AP.
This is particularly advantageous for sensing purposes since the
resulting CSI estimation is not affected by inter-stream or inter-
user interference. The LTFs are transmitted over the different
beamformer antennas in subsequent time slots, thus allowing
each beamformee to estimate the CSI of the links between its
receiving antennas and the beamformer transmitting antennas.

The NDP is received and decoded by each STA (step 2 in
Figure 2) to estimate the CSI H. The different LTFs are used
to estimate the channel over each pair of transmitting (TX)
and receiving (RX) antennas, for every orthogonal frequency-
division multiplexing (OFDM) sub-channel. This generates a
K ×M × N matrix H for each beamformee, where K is the
number of OFDM sub-channels while M and N are respec-
tively the numbers of TX and RX antennas. Next, the CSI is
compressed – to reduce the channel overhead – and fed back to
the beamformer. Using Hk to identify the M × N sub-matrix
of H containing the CSI samples related to sub-channel k, the
compressed beamforming feedback is obtained as follows ([16],
Chapter 13). First, Hk is decomposed through singular value
decomposition (SVD) and the complex-valued beamforming
matrix Vk is defined by collecting the first NSS ≤ N columns
of the M ×M right unitary matrix. The beamforming matrix is
referred to as the beamforming feedback information (BFI) and
is used by the beamformer to compute the pre-coding weights
for the NSS spatial streams directed to the beamformer.

To reduce the spectrum usage for feedback transmission,
Vk is compressed by converting it into polar coordinates.
Using this transformation, the beamformee is only required
to feed back to the beamformer the ϕ and ψ angles defining
the transformation as they allow reconstructing Vk. To further
reduce the channel occupancy, the angles are quantized using
bϕ∈{7, 9} bits for ϕ and bψ= bϕ−2 bits for ψ. The quantized
values – qϕ = {0, . . . , 2bϕ − 1} and qψ = {0, . . . , 2bψ − 1} –
are packed into the compressed beamforming frame (step 3)
and transmitted to the AP (step 4). Since MU-MIMO requires
fine-grained channel sounding – every around 10 milliseconds
to account for user mobility, according to [17] – it is funda-
mental to process the BFI in a fast manner at the AP. For this
reason, and since cryptography would lead to excessive delays,
the angles are currently sent unencrypted. Therefore, the BFI
reports are exposed to and can be read by any device that can
access the wireless channel.

BFA-Sense leverages this sounding procedure for sensing
by capturing the transmitted BFI report frames (step 5) and
using the decoded BFAs as a proxy to detect the changes in
the environment. This is done by using the BFAs as input
for a learning-based neural network classifier (detailed in Sec-
tion III-B). To reliably estimate the activity being performed
by a human moving within the propagation environment, the
BFA-Sense classifier relies on the BFAs transmitted by all
the beamformees in the network and captured during a time
window of W seconds.

To keep the model simple for implementation on memory-
and battery-constrained devices, we decided to follow a fixed-
input approach. Specifically, we consider the average number
S of BFI reports counted (at training time) in windows of
W seconds. Windows having less than S packets are padded
with placeholder packets containing zero-valued angles while
packets exceeding such threshold are discarded.

To obtain the training data, the S×K×A×U tensors derived
from the BFI reports captured during the data collection phase
are stored in a dataset, together with their associated activity
label, and a timestamp (step 6 in Figure 2). Here, S, A, and U
denote the number of samples, number of BFAs in BFI report
and the number of users in MU-MIMO respectively. The trained
model (step 7) is then used for online sensing (step 8).

B. Embedding Learning Algorithm

Few-shot learning (FSL) aims at training models that can
rapidly generalize to new tasks with only a limited number
of new labeled samples. Given this, FSL is a good candidate
to tackle the domain generalization problem in Wi-Fi sensing.
For BFA-Sense, we adopt an FSL architecture named embed-
ding learning [18]. Embedding learning is a technique used
in machine learning to convert inputs into numerical vector
representations in a way that preserves their characteristics in
relation to the task. These representations, called embeddings,
capture semantic similarities between input items. The process
involves training a model to learn the embeddings by analyzing
large amounts of data, and adjusting them so that similar
items have closer numerical representations in the vector space.
Thus, during the inference time, the embedding network does
not need to be fine-tuned, and only a few labeled samples
will be used as references for embedding mapping to classify
unobserved data.

Formally, we consider the embedding network as a function
Eθ : X → Z, where Z denotes the latent vector. The classifier
Cϕ : Z → Y is to find a mapping between encoded features Z
and labels Y . θ and ϕ are the trainable parameters of the em-
bedding network and classifier, respectively. Hence, The overall
system Fψ(X) = Y can be written as Cϕ(Eθ(X)) = Y ,
where ψ = {θ, ϕ} is the total trainable parameters of the whole
system.

In the last decade, convolutional neural networks (CNNs)
have achieved tremendous success in addressing computer vi-
sion tasks [19], [20]. The convolution layer, at the basis of
CNNs, can efficiently extract relevant features from the input by
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Fig. 3: BFA-Sense learning-based activity classifier.

performing convolution operations on the data through learn-
able kernels. Given that in this article we aim to investigate the
effectiveness of BFAs-based sensing as compared to CSI-based
sensing, we propose to use a VGG-based CNN architecture
as the embedding learning classifier for human activities [20].
The network is depicted in Figure 3 and entails stacking
three convolutional blocks (conv-block) and a max-pooling
(MaxPool) layer. The Softmax activation function is applied
to the flattened output to obtain the probability distribution over
the activities. The three conv-blocks have 128, 64, and 32
filters, respectively. We choose a descending order of number
of activation maps to reduce the model size. Moreover, features
in lower layers are usually sparser and thus require extracting
more activation maps to be properly captured.

IV. PERFORMANCE EVALUATION

A. Experimental Setup and Data Collection

We collected experimental data in three environments: a
kitchen, a living room, and a classroom. We consider three
human subjects and twenty different activities: jogging, clap-
ping, push forward, boxing, writing, brushing teeth, rotating,
standing, eating, reading a book, waiving, walking, browsing
phone, drinking, hands-up-down, phone call, side bends, check
the wrist (watch), washing hands, and browsing laptop. The
activities are performed independently by each subject within a
designated rectangular region in each of the three environments.
Both BFAs and CSI data were collected for the same duration
of 300 seconds for each of the twenty activities. To create the
ground truth, we captured the synchronous video streams of
the subjects performing the activities. The video streams are
synchronized with the data to show what the subject is doing
during the transmission of the NDP frame triggering the BFI
computation and transmission.
MU-MIMO Setup and Equipment. We set up an IEEE
802.11ac MU-MIMO network operating on channel 153 with
center frequency f c = 5.77 GHz and 80 MHz of bandwidth.
This allows sounding K = 234 OFDM sub-channels, i.e., 256
available sub-channels on 80 MHz channels minus 14 control
sub-channels and 8 pilots. We use one AP (beamformer) and
three STAs (beamformees), as depicted in Figure 4 in orange.
The AP and the STAs were implemented through Netgear
Nighthawk X4S AC2600 routers with M = 3 and N = 1
antennas enabled respectively for the AP and each of the STAs.
The three STAs were served with N ss = 1 spatial stream each
and placed at three different heights and significantly spaced

Activity
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M3

M1

Access 
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Fig. 4: Experimental setups for data collection.

from each other to form a 3× 3 MU-MIMO system. According
to the IEEE 802.11ac standard, four beamforming feedback
angles (two ϕ and two ψ) are needed to represent each of the
3× 1 channels between the AP and the STAs.

UDP data streams were sent from the AP to the STAs in the
downlink direction to trigger the channel sounding. The BFAs
frames were captured with the Wireshark network protocol
analyzer running on an off-the-shelf laptop equipped with an
Intel 9560NGW 802.11ac NIC set in monitor mode. Notice
that the BFI frame-capturing device does not need any direct
link with the AP or the STAs. Hence, the ϕ and the ψ angles
were extracted from the captured frames for each of the STAs
and used as input to the BFA-Sense learning framework. For
decoding the BFAs we used the Wi-BFI tool in [12].

Network Setup and Equipment for CSI Collection. For com-
parative studies, CSI data has also been collected concurrently
with the BFAs frame capture. For this purpose, a Wi-Fi network
consisting of an AP (referred to as CSI AP) and three CSI
monitors has been collocated with the STAs within the same
environments, as depicted in Figure 4. The network operates
on the IEEE 802.11ac channel 42, i.e., the center frequency
is fc = 5.21 GHz and the 80 MHz of bandwidth. The AP is
implemented with a Netgear Nighthawk X4S AC2600 router
while the CSI monitors are Asus RT-AC86U routers equipped
with the Nexmon CSI extraction tool [5].

To have the same setup as in the MU-MIMO network, the
CSI AP was enabled with M = 3 antennas whereas the CSI
monitors were set up to sense the channel through N = 1
antenna over Nss = 1 spatial stream each. UDP packets were
broadcasted from the CSI AP to trigger the channel estimation
on the three CSI monitors.

B. Performance Analysis

In the following, the results are obtained considering time
windows of W =0.1 s and S=10 packets/sample.

1) Evaluation Varying the Number of OFDM Sub-Channel
and Angle Resolution: It is known that Wi-Fi sensing performs
worse when lowering the number of sub-channels considered
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in the sensing process [2]. Higher sampling frequency or ex-
tensive feature extraction came at the cost of increasing the
computational burden and intensifying pre-processing steps, as
well as increasing the computational complexity of the learning
process. For this reason, we investigate the impact of the
number of sub-channels and angles on the sensing performance.

Figure 5 shows the accuracy of BFA-Sense as a func-
tion of the number of sub-channels utilized in the learning
process. To down-sample the sub-channels, we take the first
20, 40, 80, and 160 sub-channels, to emulate sensing systems
with smaller available bandwidths. The results show that the
accuracy decreases by 6.31%, 3.80%, and 3.46% respectively
for the kitchen, living room, and classroom when we switch
from 234 to 20 sub-channels. However, notice that this op-
eration drastically decreases the input tensor dimension from
10× 234× 12=28080 to 10× 20× 12=2400, implying that
sub-channel resolution decreases the computational burden by
10 times while maintaining the accuracy above 92%.

Figure 6 shows BFA-Sense performance as a function of
the number of BFAs considered for sensing. ST1 is consid-
ered for the results with up to four angles, ST1 and ST2 are
considered for the combination of eight angles, and all three
stations are considered for the combination of 12 angles. Figure
6 shows that the accuracy decreases by 1.98%, 0.16%, and
2.22% in the kitchen, living room, and classroom respectively
when considering a single angle with respect to the combination
of 12 angles. Even though the above results show no signif-
icant variation in performance even if the angle resolution is
decreased from 12 angles combined to any individual angle, we
suggest aggregating at least the angles of two spatially diverse
STAs to obtain a robust algorithm.

2) Evaluation Varying the Number of Filters in the CNN:
To further investigate the trade-off between computation com-
plexity and accuracy, we use a multiplier α ∈ (0, 1] to re-
duce proportionally the number of filters (i.e., channels) at
each layer of the CNN-based classifier in Figure 3. Specifi-
cally, applying the multiplier, the number of channels of each
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Fig. 9: Performance comparison varying the window size W .

conv-block become 128×α, 64×α, and 32×α, respectively.
Figure 7 shows how the accuracy changes when varying α in
{0.07, 0.13, 0.25, 0.5, 0.75}. BFA-Sense accuracy, averaged
over the three environments, is 97.22%, 98.01%, 98.62%,
98.88%, and 99.02%, respectively. As the α multiplier de-
creases from 0.75 to 0.07, the accuracy drops marginally by
1.8%. Note that decreasing α the classifier computation com-
plexity is reduced by α2 roughly. Hence, the results indicate
that BFA-Sense can adapt to limited computation resources
and latency-sensitive cases by sacrificing little accuracy.

3) Comparison Between BFA-Sense and CSI-based Sens-
ing: Figure 8 shows the classification accuracy of BFA-Sense
compared with the state-of-the-art CSI-based SignFi algorithm
[21] in the three different environments. We consider ST1, ST2,
and ST3 as BFAs stations and the co-located M1, M2, and M3
as CSI monitors (see Figure 4). We evaluate the performance of
BFA-Sense using the processing presented in Section III-A
and CSI-based sensing using the processing presented in [21],
adopting the CNN architecture in Figure 3 as the activity
classifier in both the cases.

The accuracy of BFA-Sense in the kitchen, living room,
and classroom is respectively 96.29%, 95.38%, and 98.47%
whereas SignFi reaches 87.99%, 85.19%, and 82.14% of ac-
curacy respectively, resulting in about 11% accuracy drop on
average. This suggests that using the compressed BFAs, the ac-
tivity classifier can perform well using few convolutional layers
while CSI-based approaches would require deeper networks to
extract representative features and achieve similar performance.

Figure 9 shows the performance of BFA-Sense and SignFi
as a function of the CSI and BFAs capture location, and the win-
dow size W . We can see that for all the locations, BFA-Sense
achieves better performance in comparison to SignFi following
the same trend as presented in Figure 8. Moreover, in the case
of SignFi, we also observe a significant performance variation
when varying the window size W . For SignFi, with the vari-
ation of the window size, the accuracy varies by 39.75% on
average, while the variability is only 1.36% for BFA-Sense.
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Fig. 10: BFA-Sense adaptation to new environments.

This suggests that feedback angles are a much more stable and
reliable measurement than CSI.

C. Evaluation of Domain Adaptation

We compare the performance of embedding learning with
baseline CNN based approach. Figure 10 shows that with only
15 s of data, embedding learning can adapt to new environments
with an average accuracy of 64.94%, 60.52%, and 63.10%
when trained in the kitchen, living room, and classroom respec-
tively. CNN achieves 5.38%, 5.92%, and 6.62% respectively,
which is 90.50% less than embedding learning.

V. CONCLUSIONS AND REMARKS

In this article, we have proposed BFA-Sense, a novel
approach to Wi-Fi sensing based on MU-MIMO beamform-
ing feedback angles (BFAs). Conversely from CSI-based ap-
proaches, (i) the BFAs can be easily recorded by off-the-shelf
devices without MIMO capabilities and without any firmware
modification; (ii) the BFAs allow a single device to concurrently
capture all the channels between the AP and the different STAs,
thus achieving a much higher sensing granularity. BFA-Sense
includes an embedding learning-based classification algorithm
to adapt to new environments with few additional data sam-
ples. We have evaluated BFA-Sense through an extensive
data collection campaign involving three subjects performing
twenty different activities in three indoor environments. The
results show that compared to traditional CSI-based sensing
approaches, BFA-Sense improves the accuracy by 11% on
average, while the embedding learning approach achieves clas-
sification accuracy up to 65% in adapting to new environments.
We hope that this work will pave the way for further research
on BFAs-based sensing.
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